期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Experimental and numerical study on attenuation of shock waves in ventilation pipes
1
作者 Wenjun Yu Shuxin Deng +5 位作者 Shengyun Chen Bingbing Yu Dongyan Jin Zhangjun Wu Yaguang Sui Huajie Wu 《Defence Technology(防务技术)》 2025年第4期156-168,共13页
With different structural forms of ventilation pipes have various attenuation effects on incident shock waves while meeting ventilation requirements.The attenuation mechanism and the propagation law of shock waves in ... With different structural forms of ventilation pipes have various attenuation effects on incident shock waves while meeting ventilation requirements.The attenuation mechanism and the propagation law of shock waves in ventilation pipes of different structures are investigated by experiments and numerical simulations.Furthermore,for the same structure,the effects of peak pressure and positive pressure time on the attenuation rate are discussed.It is found that the attenuation rate increases with the incident shock wave pressure,and the shock wave attenuation rate tends to reach its limiting value k for the same structure and reasonably short positive pressure time.Under the same conditions,the attenuation rate is calculated using the pressure of the shock wave as follows:diffusion chamber pipe,branch pipe and selfconsumption pipe;the attenuation rate per unit volume is calculated as follows:self-consumption pipe,branch pipe and diffusion chamber pipe.In addition,an easy method is provided to calculate the attenuation rate of the shock wave in single and multi-stage ventilation pipes.Corresponding parameters are provided for various structures,and the margin of error between the formulae and experimental results is within 10%,which is significant for engineering applications. 展开更多
关键词 Hock waves ventilation pipes Numerical modelling Explosion mechanics
在线阅读 下载PDF
Temperature Adjustment Mechanism of Composite Embankment with Perforated Ventilation Pipe and Blocky Stone 被引量:2
2
作者 牛富俊 孙红 +1 位作者 葛修润 章金钊 《Journal of Shanghai Jiaotong university(Science)》 EI 2013年第6期729-732,共4页
Based on the advantages of perforated ventilation characteristic of perforated ventilation pipe embankment and large porosity of blocky stone embankment, composite embankment with ventilation pipe and blocky stone is ... Based on the advantages of perforated ventilation characteristic of perforated ventilation pipe embankment and large porosity of blocky stone embankment, composite embankment with ventilation pipe and blocky stone is more efficient to protect the underlying permafrost. The temperature fields and cooling effect of composite embankment with air doors are simulated by examining the effects of holes' position drilled in the pipe, diameter in pipe and density of holes. It is shown that the underlying permafrost temperature obviously reduces by composite methods, the location of 0℃ isotherm raises significantly, especially permafrost temperature under the center and shoulder of embankment reduces more quickly, the composite embankment with holes drilled in the lower side of pipe is the most efficient, the increase of diameter has a slight influence on the 0℃ isotherm's raising, and the density of holes slightly influences the raising of 0℃ isotherm. 展开更多
关键词 composite embankment cooling effect numerical simulation PERMAFROST perforated ventilation pipe
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部