Four-Wheel Independent Steering(4WIS)Vehicles can independently control the angle of each wheel,demonstrating superior trajectory tracking performance under normal conditions.However,on intermittent icy and snowy road...Four-Wheel Independent Steering(4WIS)Vehicles can independently control the angle of each wheel,demonstrating superior trajectory tracking performance under normal conditions.However,on intermittent icy and snowy roads,the presence of time-varying adhesion coefficients,time-varying cornering stiffness,and the irregularities due to ice and snow accumulation introduce multiple uncertainties into the steering system,significantly degrading the trajectory tracking performance of 4WIS vehicles.In response,this paper proposes a robust Tube Model Predictive Control(Tube-MPC)trajectory tracking control method for 4WIS.In this method,a Bi-directional Long Short-Term Memory neural network is established for online estimation of tire cornering stiffness under different road adhesion coefficients,providing accurate estimation of time-varying cornering stiffness for each wheel to mitigate the uncertainties of time-varying adhesion coefficients and cornering stiffness.Additionally,considering the road irregularities caused by snow accumulation on intermittent icy and snowy roads,a trajectory tracking controller that integrates Tube-MPC and robust Sliding Mode Control is proposed.The nominal MPC model,developed from the estimated tire cornering stiffness,utilizes the sliding surface and the optimal auxiliary control unit law for the tube is derived from the reaching law in Tube-MPC,aiming to minimize the trajectory tracking error while enhancing the controller’s robustness against road uncertainties.The experiments show that the proposed method outperforms the Tube-MPC algorithm in terms of trajectory accuracy and robustness.This method demonstrates excellent trajectory tracking accuracy under intermittent icy and snowy road conditions,and it lays a theoretical foundation for future studies on vehicle stability and trajectory tracking under such road conditions.展开更多
Shadow extraction and elimination is essential for intelligent transportation systems(ITS)in vehicle tracking application.The shadow is the source of error for vehicle detection,which causes misclassification of vehic...Shadow extraction and elimination is essential for intelligent transportation systems(ITS)in vehicle tracking application.The shadow is the source of error for vehicle detection,which causes misclassification of vehicles and a high false alarm rate in the research of vehicle counting,vehicle detection,vehicle tracking,and classification.Most of the existing research is on shadow extraction of moving vehicles in high intensity and on standard datasets,but the process of extracting shadows from moving vehicles in low light of real scenes is difficult.The real scenes of vehicles dataset are generated by self on the Vadodara–Mumbai highway during periods of poor illumination for shadow extraction of moving vehicles to address the above problem.This paper offers a robust shadow extraction of moving vehicles and its elimination for vehicle tracking.The method is distributed into two phases:In the first phase,we extract foreground regions using a mixture of Gaussian model,and then in the second phase,with the help of the Gamma correction,intensity ratio,negative transformation,and a combination of Gaussian filters,we locate and remove the shadow region from the foreground areas.Compared to the outcomes proposed method with outcomes of an existing method,the suggested method achieves an average true negative rate of above 90%,a shadow detection rate SDR(η%),and a shadow discrimination rate SDR(ξ%)of 80%.Hence,the suggested method is more appropriate for moving shadow detection in real scenes.展开更多
When tracking a unmanned aerial vehicle(UAV)in complex backgrounds,environmen-tal noise and clutter often obscure it.Traditional radar target tracking algorithms face multiple lim-itations when tracking a UAV,includin...When tracking a unmanned aerial vehicle(UAV)in complex backgrounds,environmen-tal noise and clutter often obscure it.Traditional radar target tracking algorithms face multiple lim-itations when tracking a UAV,including high vulnerability to target occlusion and shape variations,as well as pronounced false alarms and missed detections in low signal-to-noise ratio(SNR)envi-ronments.To address these issues,this paper proposes a UAV detection and tracking algorithm based on a low-frequency communication network.The accuracy and effectiveness of the algorithm are validated through simulation experiments using field-measured point cloud data.Additionally,the key parameters of the algorithm are optimized through a process of selection and comparison,thereby improving the algorithm's precision.The experimental results show that the improved algo-rithm can significantly enhance the detection and tracking performance of the UAV under high clutter density conditions,effectively reduce the false alarm rate and markedly improve overall tracking performance metrics.展开更多
To track the vehicles under occlusion, a vehicle tracking algorithm based on blocks is proposed. The target vehicle is divided into several blocks of uniform size, in which the edge block can overlap its neighboring b...To track the vehicles under occlusion, a vehicle tracking algorithm based on blocks is proposed. The target vehicle is divided into several blocks of uniform size, in which the edge block can overlap its neighboring blocks. All the blocks' motion vectors are estimated, and the noise motion vectors are detected and adjusted to decrease the error of motion vector estimation. Then, by moving the blocks based on the adjusted motion vectors, the vehicle is tracked. Aiming at the occlusion between vehicles, a Markov random field is established to describe the relationship between the blocks in the blocked regions. The neighborhood of blocks is defined using the Euclidean distance. An energy function is defined based on the blocks' histograms and optimized by the simulated annealing algorithm to segment the occlusion region. Experimental results demonstrate that the proposed algorithm can track vehicles under occlusion accurately.展开更多
Life Cycle Tracking(LCT)involves continuous monitoring and analy-sis of various activities associated with a vehicle.The crucial factor in the LCT is to ensure the validity of gathered data as numerous supply chain ph...Life Cycle Tracking(LCT)involves continuous monitoring and analy-sis of various activities associated with a vehicle.The crucial factor in the LCT is to ensure the validity of gathered data as numerous supply chain phases are involved and the data is assessed by multiple stakeholders.Frauds and swindling activities can be prevented if the history of the vehicles is made available to the interested parties.Blockchain provides a way of enforcing trustworthiness to the supply chain participants and the data associated with the various actions per-formed.Machine learning techniques when combined decentralized nature of blockchains can be used to develop a robust Vehicle LCT model.In the proposed work,Harmonic Optimized Gradient Descent andŁukasiewicz Fuzzy(HOGD-LF)Vehicle Life Cycle Tracking in Cloud Environment is proposed and it involves three stages.First,the Progressive Harmonic Optimized User Registra-tion and Authentication model is designed for computationally efficient registra-tion and authentication.Next,for the authentic user,the Gradient Descent Blockchain-based SVM Data Encryption model is designed with minimum CPU utilization.Finally,Łukasiewicz Fuzzy Smart Contract Verification is per-formed with encrypted data to ensure accurate and precise fraudulent activity deduction.The experimental analysis shows that the proposed method achieves significant performance in terms of life cycle’s prediction time,overhead,and accuracy for a different number of users.展开更多
This article proposes a linear parameter varying (LPV) switching tracking control scheme for a flexible air-breathing hypersonic vehicle (FAHV). First, a polytopic LPV model is constructed to represent the complex...This article proposes a linear parameter varying (LPV) switching tracking control scheme for a flexible air-breathing hypersonic vehicle (FAHV). First, a polytopic LPV model is constructed to represent the complex nonlinear longitudinal model of the FAHV by using Jacobian linearization and tensor-product (T-P) model transformation approach. Second, for less conservative controller design purpose, the flight envelope is divided into four sub-regions and a non-fragile LPV controller is designed for each parameter sub-region. These non-fragile LPV controllers are then switched in order to guarantee the closed-loop FAHV system to be asymptotically stable and satisfy a specified performance criterion. The desired non-fragile LPV switching controller is found by solving a convex constraint problem which can be efficiently solved using available linear matrix inequality (LMI) techniques, and robust stability analysis of the closed-loop FAHV system is verified based on multiple Lypapunov functions (MLFs). Finally, numerical simulations have demonstrated the effectiveness of the proposed approach.展开更多
A real-time vehicle tracking method is proposed for trattlC monitoring system at roau mte^cc- tions, and the vehicle tracking module consists of an initialization stage and a tracking stage. Li- cense plate location b...A real-time vehicle tracking method is proposed for trattlC monitoring system at roau mte^cc- tions, and the vehicle tracking module consists of an initialization stage and a tracking stage. Li- cense plate location based on edge density and color analysis is used to detect the license plate re- gion for tracking initialization. In the tracking stage, covariance matching is employed to track the license plate. Genetic algorithm is used to reduce the computational cost. Real-time image tracking of multi-lane vehicles is achieved. In the experiment, test videos are recorded in advance by record- ers of actual E-police systems erage false detection rate and at several different city intersections. In the tracking module, the av- missed plates rate are 1.19%, and 1.72%, respectively.展开更多
In order to study the application of dual clutch transmission (DCT) on tracked vehicles, a simulation moclel and two control methods were performed for starting analysis. Based on a certain transmission of an existi...In order to study the application of dual clutch transmission (DCT) on tracked vehicles, a simulation moclel and two control methods were performed for starting analysis. Based on a certain transmission of an existing tracked vehicle, a DCT structure was proposed. Matlab/Simulink was a dopted as a platform to develop the simulation model. The engine speed was controlled to follow the target speed as a launch strategy. Two control methods, a proportional integral derivative ( PID ) control method and a fuzzy control method, were proposed to control the engine throttle and oil pressure in order to track the target engine speed. Simulation results show that either the PID control or fuzzy control method can improve the starting performance compared with no loop control meth od. Fuzzy control method can lead a better starting quality compared with PID control method.展开更多
The distribution of track tension on track link is complex when the tracked vehicles run at a high speed.A multi-drive track link structure,which changes the traditional induction wheel into the driving wheel was prop...The distribution of track tension on track link is complex when the tracked vehicles run at a high speed.A multi-drive track link structure,which changes the traditional induction wheel into the driving wheel was proposed.The mathematical model of the system was established and the distribution of track tension was studied.The combined simulation model of RecurDyn and Simulink of the structure with multi-drive track was established.The simulation results show that our proposed structure has more uniform tension distribution than traditional structures,especially under the high speed condition.The maximum tension can be reduced by 28 kN-36 kN and the transmission efficiency can be improved by10%-16% under high speed condition with this new structure.展开更多
An important and challenging aspect of developing an intelligent transportation system is the identification of nighttime vehicles. Most accidents occur at night owing to the absence of night lighting conditions. Vehi...An important and challenging aspect of developing an intelligent transportation system is the identification of nighttime vehicles. Most accidents occur at night owing to the absence of night lighting conditions. Vehicle detection has become a vital subject for research to ensure safety and avoid accidents. New vision-based on-road nighttime vehicle detection and tracking system are suggested in this survey paper using taillight and headlight features. Using computer vision and some image processing techniques, the proposed system can identify vehicles based on taillight and headlight features. For vehicle tracking, a centroid tracking algorithm has been used. Euclidean Distance method has been used for measuring the distances between two neighboring objects and tracks the nearest neighbor. In the proposed system two flexible fixed Region of Interest (ROI) have been used, one is the Headlight ROI, and another is the Taillight ROI that could adapt to different resolutions of the images and videos. The achievement of this research work is that the proposed two ROIs can work simultaneously in a frame to identify oncoming and preceding vehicles at night. The segmentation techniques and double thresholding method have been used to extract the red and white components from the scene to identify the vehicle headlights and taillights. To evaluate the capability of the proposed process, two types of datasets have been used. Experimental findings indicate that the performance of the proposed technique is reliable and effective in distinct nighttime environments for detection and tracking of vehicles. The proposed method has been able to detect and track double lights as well as single light such as motorcycle light and achieved average accuracy and average processing time of vehicle detection about 97.22% and 0.01 s per frame respectively.展开更多
Video processing is one challenge in collecting vehicle trajectories from unmanned aerial vehicle(UAV) and road boundary estimation is one way to improve the video processing algorithms. However, current methods do no...Video processing is one challenge in collecting vehicle trajectories from unmanned aerial vehicle(UAV) and road boundary estimation is one way to improve the video processing algorithms. However, current methods do not work well for low volume road, which is not well-marked and with noises such as vehicle tracks. A fusion-based method termed Dempster-Shafer-based road detection(DSRD) is proposed to address this issue. This method detects road boundary by combining multiple information sources using Dempster-Shafer theory(DST). In order to test the performance of the proposed method, two field experiments were conducted, one of which was on a highway partially covered by snow and another was on a dense traffic highway. The results show that DSRD is robust and accurate, whose detection rates are 100% and 99.8% compared with manual detection results. Then, DSRD is adopted to improve UAV video processing algorithm, and the vehicle detection and tracking rate are improved by 2.7% and 5.5%,respectively. Also, the computation time has decreased by 5% and 8.3% for two experiments, respectively.展开更多
Multi-object tracking is a vital problem as many applications require better tracking approaches.Although learning-based detectors are becoming extremely powerful,there are few tracking methods designed to work with t...Multi-object tracking is a vital problem as many applications require better tracking approaches.Although learning-based detectors are becoming extremely powerful,there are few tracking methods designed to work with them in real time.We explored an efficient flexible online vehicle tracking-by-detection framework suitable for real-virtual mapping systems,which combines a non-recursive temporal window search with delayed output and produces stable trajectories despite noisy detection responses.Its computation speed meets the real-time requirements,whereas its performance is comparable with that of state-of-the-art online trackers on the DETRAC dataset.The trajectories from our approach also contain the target class and color information important for virtual vehicle motion reconstruction.展开更多
Traffic data collection is essential for performance assessment, safety improvement and road planning. While automated traffic data collection for highways is relatively mature, that for roundabouts is more challengin...Traffic data collection is essential for performance assessment, safety improvement and road planning. While automated traffic data collection for highways is relatively mature, that for roundabouts is more challenging due to more complex traffic scenes, data specifications and vehicle behavior. In this paper, the authors propose an automated traffic data collection system dedicated to roundabout scenes. The proposed system has mainly four steps of processing. First, camera calibration is performed for roundabout traffic scenes with a novel circle-based calibration algorithm. Second, the system uses enhanced Mixture of Gaussian algorithm with shaking removal for video segmentation, which can tolerate repeated camera displacements and background movements. Then, Kalman filtering, Kemel-based tracking and overlap-based opti- mization are employed to track vehicles while they are occluded and to derive the complete vehicle trajectories. The resulting vehicle trajectory of each individual vehicle gives the position, size, shape and speed of the vehicle at each time moment. Finally, a data mining algorithm is used to automatically extract the interested traffic data from the vehicle trajectories. The overall traffic data collection system has been implemented in software and runs on regular PC. The total processing time for a 3-hour video is currently 6 h. The automated traffic data collection system can significantly reduce cost and improve efficiency compared to manual data collection. The extracted traffic data have been compared to accurate manual measurements for 29 videos recorded on 29 different days, and an accuracy of more than 90% has been achieved.展开更多
A scheme of fuzzy logic control for the suspension system of a tracked vehicle is presented. A mechanical model for the whole body of a tracked vehicle, which is totally a fifteen-degree-of-freedom system, is establis...A scheme of fuzzy logic control for the suspension system of a tracked vehicle is presented. A mechanical model for the whole body of a tracked vehicle, which is totally a fifteen-degree-of-freedom system, is established. The model includes the vertical motion, the pitch motion as well as the roll motion of the tracked vehicle. In contrast to most previous studies, the coupling effect among the vertical, the pitch and the roll motions of the suspension system of a tracked vehicle is considered simultaneously. The simulation of fuzzy logic control under road surface with random excitation shows that the acceleration, pitch angle and roll angle of suspension system can be efficiently controlled.展开更多
To solve the problem of power distribution for hybrid tracked vehicles (HTV), a supervi- sory control strategy is proposed. Firstly, power system integration is analyzed and modeled. Then the control algorithm is gi...To solve the problem of power distribution for hybrid tracked vehicles (HTV), a supervi- sory control strategy is proposed. Firstly, power system integration is analyzed and modeled. Then the control algorithm is given. Two fuzzy logics are used to realize the coordination control over each power unit. One controls power distribution based on the load power and battery state of charge (SOC). The other manage the power during regenerating braking. To validate the presented control strategy, a "driver and controller" in the loop simulation platform is built based on dSPACE system and real-time simulation is made. The simulation results show that the strategy presented can solve the power distribution problem of hybrid tracked vehicles correctly and effectively.展开更多
Turning mechanism is important assemblies for tracked vehicles. Turning performance is important evaluating indicator. The performance of the turning mechanism directly affect the mobility and productivity of the craw...Turning mechanism is important assemblies for tracked vehicles. Turning performance is important evaluating indicator. The performance of the turning mechanism directly affect the mobility and productivity of the crawler. However, there are still some problems crying out for solutions in superior turning mechanism for vehicle engineering area. Composition and performance of turning system in agricultural tracked vehicles matched with twin driving differential turning mechanism was introduced, which adopted quiet hydraulic double pumps and double motors, took advantage of flexibility greatly for track vehicle turning and benefit for handling used steering wheel.展开更多
The latest advances in Deep Learning based methods and computational capabilities provide new opportunities for vehicle tracking. In this study, YOLOv2 (You Only Look Once—version 2) is used as an open source Convolu...The latest advances in Deep Learning based methods and computational capabilities provide new opportunities for vehicle tracking. In this study, YOLOv2 (You Only Look Once—version 2) is used as an open source Convolutional Neural Network (CNN), to process high-resolution satellite images, in order to generate the spatio-temporal GIS (Geographic Information System) tracks of moving vehicles. At first step, YOLOv2 is trained with a set of images of 1024 × 1024 resolution from the VEDAI database. The model showed satisfactory results, with an accuracy of 91%, and then at second step, is used to process aerial images extracted from aerial video. The output vehicle bounding boxes have been processed and fed into the GIS based LinkTheDots algorithm, allowing vehicles identification and spatio-temporal tracks generation in GIS format.展开更多
To realize the stabilization and the tracking of flight control for an air-breathing hypersonic cruise vehicle, the linearization of the longitudinal model under trimmed cruise condition is processed firstly. Furtherm...To realize the stabilization and the tracking of flight control for an air-breathing hypersonic cruise vehicle, the linearization of the longitudinal model under trimmed cruise condition is processed firstly. Furthermore, the flight control problem is formulated as a robust model tracking control problem. And then, based on the robust parametric approach, eigenstructure assignment and reference model tracking theory, a parametric optimization method for robust controller design is presented. The simulation results show the effectiveness of the proposed approach.展开更多
Deep-sea mining has emerged as a critical solution to address global resource shortages;however,the mechanical interaction between tracked mining vehicles(TMVs)and soft seabed sediments presents fundamental engineerin...Deep-sea mining has emerged as a critical solution to address global resource shortages;however,the mechanical interaction between tracked mining vehicles(TMVs)and soft seabed sediments presents fundamental engineering challenges.This study establishes a multiscale modelling framework coupling the discrete element method(DEM)with multi-body dynamics(MBD)to investigate track-seabed dynamic interactions across three operational modes:flat terrain,slope climbing,and ditch surmounting.The simulation framework,validated against laboratory experiments,systematically evaluates the influence of grouser geometry(involute,triangular,and pin-type)and traveling speed(0.2–1.0 m/s)on traction performance,slip rate,and ground pressure distribution.Results reveal rate-dependent traction mechanisms governed by soil microstructural responses:higher speeds enhance peak traction but exacerbate slip instability on complex terrain.Critical operational thresholds are established—0.7 m/s for flat terrain,≤0.5 m/s for slopes and ditches—with distinct grouser optimization strategies:involute grousers achieve 35%–40%slip reduction on slopes through progressive soil engagement,while triangular grousers provide optimal impact resistance during ditch crossing with 30%–35%performance improvement.These findings provide quantitative design criteria and operational guidelines for optimizing TMV structural parameters and control strategies,offering a robust theoretical foundation for enhancing the performance,safety,and reliability of deep-sea mining equipment in complex submarine environments.展开更多
The China comprehensive inspection train(CIT)is designed for evaluating railway infrastructure to ensure safe railway operations.The CIT integrates an array of inspection devices,capable of simultaneously assessing ra...The China comprehensive inspection train(CIT)is designed for evaluating railway infrastructure to ensure safe railway operations.The CIT integrates an array of inspection devices,capable of simultaneously assessing railway health condition parameters.The CIT450,representing the second generation,can reach a top speed of 450 km/h with inspection on the infrastructure.This paper begins by outlining the global evolution of inspection trains.It then focuses on the critical technologies underlying the CIT450,which include:(1)real-time inspection data acquisition with spatial and temporal synchronization;(2)intelligent fusion and centralized management of multi-source inspection data,enabling remote supervision of the inspection process;(3)technologies in inspecting track,train–track interaction,catenary,signalling systems,and train operating environment;and(4)AI-driven analysis and correlation of inspection data.The future developmental directions for comprehensive inspection trains are discussed finally.The CIT450’s approach to real-time railway health monitoring can enrich traditional inspection means,operational,and maintenance methods by enhancing inspection efficiency and automating railway maintenance.展开更多
基金Supported by National Natural Science Foundation of China(Grant Nos.52405112,U24A20199)the Postdoctoral Fellowship Program of CPSF(Grant No.GZB20240973).
文摘Four-Wheel Independent Steering(4WIS)Vehicles can independently control the angle of each wheel,demonstrating superior trajectory tracking performance under normal conditions.However,on intermittent icy and snowy roads,the presence of time-varying adhesion coefficients,time-varying cornering stiffness,and the irregularities due to ice and snow accumulation introduce multiple uncertainties into the steering system,significantly degrading the trajectory tracking performance of 4WIS vehicles.In response,this paper proposes a robust Tube Model Predictive Control(Tube-MPC)trajectory tracking control method for 4WIS.In this method,a Bi-directional Long Short-Term Memory neural network is established for online estimation of tire cornering stiffness under different road adhesion coefficients,providing accurate estimation of time-varying cornering stiffness for each wheel to mitigate the uncertainties of time-varying adhesion coefficients and cornering stiffness.Additionally,considering the road irregularities caused by snow accumulation on intermittent icy and snowy roads,a trajectory tracking controller that integrates Tube-MPC and robust Sliding Mode Control is proposed.The nominal MPC model,developed from the estimated tire cornering stiffness,utilizes the sliding surface and the optimal auxiliary control unit law for the tube is derived from the reaching law in Tube-MPC,aiming to minimize the trajectory tracking error while enhancing the controller’s robustness against road uncertainties.The experiments show that the proposed method outperforms the Tube-MPC algorithm in terms of trajectory accuracy and robustness.This method demonstrates excellent trajectory tracking accuracy under intermittent icy and snowy road conditions,and it lays a theoretical foundation for future studies on vehicle stability and trajectory tracking under such road conditions.
基金funded by Researchers Supporting Project Number(RSP2023R503),King Saud University,Riyadh,Saudi Arabia。
文摘Shadow extraction and elimination is essential for intelligent transportation systems(ITS)in vehicle tracking application.The shadow is the source of error for vehicle detection,which causes misclassification of vehicles and a high false alarm rate in the research of vehicle counting,vehicle detection,vehicle tracking,and classification.Most of the existing research is on shadow extraction of moving vehicles in high intensity and on standard datasets,but the process of extracting shadows from moving vehicles in low light of real scenes is difficult.The real scenes of vehicles dataset are generated by self on the Vadodara–Mumbai highway during periods of poor illumination for shadow extraction of moving vehicles to address the above problem.This paper offers a robust shadow extraction of moving vehicles and its elimination for vehicle tracking.The method is distributed into two phases:In the first phase,we extract foreground regions using a mixture of Gaussian model,and then in the second phase,with the help of the Gamma correction,intensity ratio,negative transformation,and a combination of Gaussian filters,we locate and remove the shadow region from the foreground areas.Compared to the outcomes proposed method with outcomes of an existing method,the suggested method achieves an average true negative rate of above 90%,a shadow detection rate SDR(η%),and a shadow discrimination rate SDR(ξ%)of 80%.Hence,the suggested method is more appropriate for moving shadow detection in real scenes.
基金supported in part by National Natural Science Founda-tion of China(No.62372284)in part by Shanghai Nat-ural Science Foundation(No.24ZR1421800).
文摘When tracking a unmanned aerial vehicle(UAV)in complex backgrounds,environmen-tal noise and clutter often obscure it.Traditional radar target tracking algorithms face multiple lim-itations when tracking a UAV,including high vulnerability to target occlusion and shape variations,as well as pronounced false alarms and missed detections in low signal-to-noise ratio(SNR)envi-ronments.To address these issues,this paper proposes a UAV detection and tracking algorithm based on a low-frequency communication network.The accuracy and effectiveness of the algorithm are validated through simulation experiments using field-measured point cloud data.Additionally,the key parameters of the algorithm are optimized through a process of selection and comparison,thereby improving the algorithm's precision.The experimental results show that the improved algo-rithm can significantly enhance the detection and tracking performance of the UAV under high clutter density conditions,effectively reduce the false alarm rate and markedly improve overall tracking performance metrics.
基金The National Natural Science Foundation of China(No.60972001,61374194)
文摘To track the vehicles under occlusion, a vehicle tracking algorithm based on blocks is proposed. The target vehicle is divided into several blocks of uniform size, in which the edge block can overlap its neighboring blocks. All the blocks' motion vectors are estimated, and the noise motion vectors are detected and adjusted to decrease the error of motion vector estimation. Then, by moving the blocks based on the adjusted motion vectors, the vehicle is tracked. Aiming at the occlusion between vehicles, a Markov random field is established to describe the relationship between the blocks in the blocked regions. The neighborhood of blocks is defined using the Euclidean distance. An energy function is defined based on the blocks' histograms and optimized by the simulated annealing algorithm to segment the occlusion region. Experimental results demonstrate that the proposed algorithm can track vehicles under occlusion accurately.
基金The authors wish to express their sincere thanks to the Department of Science&Technology,New Delhi,India(Project ID:SR/FST/ETI-371/2014)express their sincere thanks to the INSPIRE fellowship(DST/INSPIRE Fellowship/2016/IF160837)for their financial support.The authors also thank SASTRA Deemed to be University,Thanjavur,India for extending the infrastructural support to carry out this work.
文摘Life Cycle Tracking(LCT)involves continuous monitoring and analy-sis of various activities associated with a vehicle.The crucial factor in the LCT is to ensure the validity of gathered data as numerous supply chain phases are involved and the data is assessed by multiple stakeholders.Frauds and swindling activities can be prevented if the history of the vehicles is made available to the interested parties.Blockchain provides a way of enforcing trustworthiness to the supply chain participants and the data associated with the various actions per-formed.Machine learning techniques when combined decentralized nature of blockchains can be used to develop a robust Vehicle LCT model.In the proposed work,Harmonic Optimized Gradient Descent andŁukasiewicz Fuzzy(HOGD-LF)Vehicle Life Cycle Tracking in Cloud Environment is proposed and it involves three stages.First,the Progressive Harmonic Optimized User Registra-tion and Authentication model is designed for computationally efficient registra-tion and authentication.Next,for the authentic user,the Gradient Descent Blockchain-based SVM Data Encryption model is designed with minimum CPU utilization.Finally,Łukasiewicz Fuzzy Smart Contract Verification is per-formed with encrypted data to ensure accurate and precise fraudulent activity deduction.The experimental analysis shows that the proposed method achieves significant performance in terms of life cycle’s prediction time,overhead,and accuracy for a different number of users.
基金co-supported by National Outstanding Youth Science Foundation(No.61125306)National Natural Science Foundation of Major Research Plan(Nos.91016004,61034002)+1 种基金Research Fund for the Doctoral Program of Higher Education of China(No.20110092110020)the Scientific Research Foundation of Graduate School of Southeast University(No.YBJJ1103)
文摘This article proposes a linear parameter varying (LPV) switching tracking control scheme for a flexible air-breathing hypersonic vehicle (FAHV). First, a polytopic LPV model is constructed to represent the complex nonlinear longitudinal model of the FAHV by using Jacobian linearization and tensor-product (T-P) model transformation approach. Second, for less conservative controller design purpose, the flight envelope is divided into four sub-regions and a non-fragile LPV controller is designed for each parameter sub-region. These non-fragile LPV controllers are then switched in order to guarantee the closed-loop FAHV system to be asymptotically stable and satisfy a specified performance criterion. The desired non-fragile LPV switching controller is found by solving a convex constraint problem which can be efficiently solved using available linear matrix inequality (LMI) techniques, and robust stability analysis of the closed-loop FAHV system is verified based on multiple Lypapunov functions (MLFs). Finally, numerical simulations have demonstrated the effectiveness of the proposed approach.
基金Supported by the National Natural Science Foundation of China(No.61005034)China Postdoctoral Science Foundation and under Grant(No.2012M510768)the Science Foundation of Hebei Province under Grant(No.F2012203182)
文摘A real-time vehicle tracking method is proposed for trattlC monitoring system at roau mte^cc- tions, and the vehicle tracking module consists of an initialization stage and a tracking stage. Li- cense plate location based on edge density and color analysis is used to detect the license plate re- gion for tracking initialization. In the tracking stage, covariance matching is employed to track the license plate. Genetic algorithm is used to reduce the computational cost. Real-time image tracking of multi-lane vehicles is achieved. In the experiment, test videos are recorded in advance by record- ers of actual E-police systems erage false detection rate and at several different city intersections. In the tracking module, the av- missed plates rate are 1.19%, and 1.72%, respectively.
基金Supported by Defense Advanced Research Support Project(62301030303)111 Project(B08043)
文摘In order to study the application of dual clutch transmission (DCT) on tracked vehicles, a simulation moclel and two control methods were performed for starting analysis. Based on a certain transmission of an existing tracked vehicle, a DCT structure was proposed. Matlab/Simulink was a dopted as a platform to develop the simulation model. The engine speed was controlled to follow the target speed as a launch strategy. Two control methods, a proportional integral derivative ( PID ) control method and a fuzzy control method, were proposed to control the engine throttle and oil pressure in order to track the target engine speed. Simulation results show that either the PID control or fuzzy control method can improve the starting performance compared with no loop control meth od. Fuzzy control method can lead a better starting quality compared with PID control method.
基金Supported by the National Natural Science Foundation of China(51475045)
文摘The distribution of track tension on track link is complex when the tracked vehicles run at a high speed.A multi-drive track link structure,which changes the traditional induction wheel into the driving wheel was proposed.The mathematical model of the system was established and the distribution of track tension was studied.The combined simulation model of RecurDyn and Simulink of the structure with multi-drive track was established.The simulation results show that our proposed structure has more uniform tension distribution than traditional structures,especially under the high speed condition.The maximum tension can be reduced by 28 kN-36 kN and the transmission efficiency can be improved by10%-16% under high speed condition with this new structure.
文摘An important and challenging aspect of developing an intelligent transportation system is the identification of nighttime vehicles. Most accidents occur at night owing to the absence of night lighting conditions. Vehicle detection has become a vital subject for research to ensure safety and avoid accidents. New vision-based on-road nighttime vehicle detection and tracking system are suggested in this survey paper using taillight and headlight features. Using computer vision and some image processing techniques, the proposed system can identify vehicles based on taillight and headlight features. For vehicle tracking, a centroid tracking algorithm has been used. Euclidean Distance method has been used for measuring the distances between two neighboring objects and tracks the nearest neighbor. In the proposed system two flexible fixed Region of Interest (ROI) have been used, one is the Headlight ROI, and another is the Taillight ROI that could adapt to different resolutions of the images and videos. The achievement of this research work is that the proposed two ROIs can work simultaneously in a frame to identify oncoming and preceding vehicles at night. The segmentation techniques and double thresholding method have been used to extract the red and white components from the scene to identify the vehicle headlights and taillights. To evaluate the capability of the proposed process, two types of datasets have been used. Experimental findings indicate that the performance of the proposed technique is reliable and effective in distinct nighttime environments for detection and tracking of vehicles. The proposed method has been able to detect and track double lights as well as single light such as motorcycle light and achieved average accuracy and average processing time of vehicle detection about 97.22% and 0.01 s per frame respectively.
基金Project(2009AA11Z220)supported by the National High Technology Research and Development Program of China
文摘Video processing is one challenge in collecting vehicle trajectories from unmanned aerial vehicle(UAV) and road boundary estimation is one way to improve the video processing algorithms. However, current methods do not work well for low volume road, which is not well-marked and with noises such as vehicle tracks. A fusion-based method termed Dempster-Shafer-based road detection(DSRD) is proposed to address this issue. This method detects road boundary by combining multiple information sources using Dempster-Shafer theory(DST). In order to test the performance of the proposed method, two field experiments were conducted, one of which was on a highway partially covered by snow and another was on a dense traffic highway. The results show that DSRD is robust and accurate, whose detection rates are 100% and 99.8% compared with manual detection results. Then, DSRD is adopted to improve UAV video processing algorithm, and the vehicle detection and tracking rate are improved by 2.7% and 5.5%,respectively. Also, the computation time has decreased by 5% and 8.3% for two experiments, respectively.
文摘Multi-object tracking is a vital problem as many applications require better tracking approaches.Although learning-based detectors are becoming extremely powerful,there are few tracking methods designed to work with them in real time.We explored an efficient flexible online vehicle tracking-by-detection framework suitable for real-virtual mapping systems,which combines a non-recursive temporal window search with delayed output and produces stable trajectories despite noisy detection responses.Its computation speed meets the real-time requirements,whereas its performance is comparable with that of state-of-the-art online trackers on the DETRAC dataset.The trajectories from our approach also contain the target class and color information important for virtual vehicle motion reconstruction.
文摘Traffic data collection is essential for performance assessment, safety improvement and road planning. While automated traffic data collection for highways is relatively mature, that for roundabouts is more challenging due to more complex traffic scenes, data specifications and vehicle behavior. In this paper, the authors propose an automated traffic data collection system dedicated to roundabout scenes. The proposed system has mainly four steps of processing. First, camera calibration is performed for roundabout traffic scenes with a novel circle-based calibration algorithm. Second, the system uses enhanced Mixture of Gaussian algorithm with shaking removal for video segmentation, which can tolerate repeated camera displacements and background movements. Then, Kalman filtering, Kemel-based tracking and overlap-based opti- mization are employed to track vehicles while they are occluded and to derive the complete vehicle trajectories. The resulting vehicle trajectory of each individual vehicle gives the position, size, shape and speed of the vehicle at each time moment. Finally, a data mining algorithm is used to automatically extract the interested traffic data from the vehicle trajectories. The overall traffic data collection system has been implemented in software and runs on regular PC. The total processing time for a 3-hour video is currently 6 h. The automated traffic data collection system can significantly reduce cost and improve efficiency compared to manual data collection. The extracted traffic data have been compared to accurate manual measurements for 29 videos recorded on 29 different days, and an accuracy of more than 90% has been achieved.
文摘A scheme of fuzzy logic control for the suspension system of a tracked vehicle is presented. A mechanical model for the whole body of a tracked vehicle, which is totally a fifteen-degree-of-freedom system, is established. The model includes the vertical motion, the pitch motion as well as the roll motion of the tracked vehicle. In contrast to most previous studies, the coupling effect among the vertical, the pitch and the roll motions of the suspension system of a tracked vehicle is considered simultaneously. The simulation of fuzzy logic control under road surface with random excitation shows that the acceleration, pitch angle and roll angle of suspension system can be efficiently controlled.
基金Supported by the National Natural Science Foundation of China ( 50975027 )the Fundamental Research Funds for the Central Universities( N110303007)
文摘To solve the problem of power distribution for hybrid tracked vehicles (HTV), a supervi- sory control strategy is proposed. Firstly, power system integration is analyzed and modeled. Then the control algorithm is given. Two fuzzy logics are used to realize the coordination control over each power unit. One controls power distribution based on the load power and battery state of charge (SOC). The other manage the power during regenerating braking. To validate the presented control strategy, a "driver and controller" in the loop simulation platform is built based on dSPACE system and real-time simulation is made. The simulation results show that the strategy presented can solve the power distribution problem of hybrid tracked vehicles correctly and effectively.
基金Supported by Postdoctoral Fund of Settling Down in Heilongjiang Province(LBH-Q06094)
文摘Turning mechanism is important assemblies for tracked vehicles. Turning performance is important evaluating indicator. The performance of the turning mechanism directly affect the mobility and productivity of the crawler. However, there are still some problems crying out for solutions in superior turning mechanism for vehicle engineering area. Composition and performance of turning system in agricultural tracked vehicles matched with twin driving differential turning mechanism was introduced, which adopted quiet hydraulic double pumps and double motors, took advantage of flexibility greatly for track vehicle turning and benefit for handling used steering wheel.
文摘The latest advances in Deep Learning based methods and computational capabilities provide new opportunities for vehicle tracking. In this study, YOLOv2 (You Only Look Once—version 2) is used as an open source Convolutional Neural Network (CNN), to process high-resolution satellite images, in order to generate the spatio-temporal GIS (Geographic Information System) tracks of moving vehicles. At first step, YOLOv2 is trained with a set of images of 1024 × 1024 resolution from the VEDAI database. The model showed satisfactory results, with an accuracy of 91%, and then at second step, is used to process aerial images extracted from aerial video. The output vehicle bounding boxes have been processed and fed into the GIS based LinkTheDots algorithm, allowing vehicles identification and spatio-temporal tracks generation in GIS format.
基金Sponsored by the Major Program of National Natural Science Foundation of China (Grant No.60710002)the Program for Changjiang Scholars and Innovative Research Team in University
文摘To realize the stabilization and the tracking of flight control for an air-breathing hypersonic cruise vehicle, the linearization of the longitudinal model under trimmed cruise condition is processed firstly. Furthermore, the flight control problem is formulated as a robust model tracking control problem. And then, based on the robust parametric approach, eigenstructure assignment and reference model tracking theory, a parametric optimization method for robust controller design is presented. The simulation results show the effectiveness of the proposed approach.
基金financially supported by the National Key Research and Development Program of China-Young Scientist Project(No.2024YFC2815400)the National Natural Science Foundation of China(No.52588202).
文摘Deep-sea mining has emerged as a critical solution to address global resource shortages;however,the mechanical interaction between tracked mining vehicles(TMVs)and soft seabed sediments presents fundamental engineering challenges.This study establishes a multiscale modelling framework coupling the discrete element method(DEM)with multi-body dynamics(MBD)to investigate track-seabed dynamic interactions across three operational modes:flat terrain,slope climbing,and ditch surmounting.The simulation framework,validated against laboratory experiments,systematically evaluates the influence of grouser geometry(involute,triangular,and pin-type)and traveling speed(0.2–1.0 m/s)on traction performance,slip rate,and ground pressure distribution.Results reveal rate-dependent traction mechanisms governed by soil microstructural responses:higher speeds enhance peak traction but exacerbate slip instability on complex terrain.Critical operational thresholds are established—0.7 m/s for flat terrain,≤0.5 m/s for slopes and ditches—with distinct grouser optimization strategies:involute grousers achieve 35%–40%slip reduction on slopes through progressive soil engagement,while triangular grousers provide optimal impact resistance during ditch crossing with 30%–35%performance improvement.These findings provide quantitative design criteria and operational guidelines for optimizing TMV structural parameters and control strategies,offering a robust theoretical foundation for enhancing the performance,safety,and reliability of deep-sea mining equipment in complex submarine environments.
基金supported by the National Natural Science Foundation of China(Grant No.52272427)the Technology Research and Development Program of China National Railway Group(Grant No.K2021T015)Development Plan of China Academy of Railway Sciences Corporation Ltd.(Grant No.2022YJ256)。
文摘The China comprehensive inspection train(CIT)is designed for evaluating railway infrastructure to ensure safe railway operations.The CIT integrates an array of inspection devices,capable of simultaneously assessing railway health condition parameters.The CIT450,representing the second generation,can reach a top speed of 450 km/h with inspection on the infrastructure.This paper begins by outlining the global evolution of inspection trains.It then focuses on the critical technologies underlying the CIT450,which include:(1)real-time inspection data acquisition with spatial and temporal synchronization;(2)intelligent fusion and centralized management of multi-source inspection data,enabling remote supervision of the inspection process;(3)technologies in inspecting track,train–track interaction,catenary,signalling systems,and train operating environment;and(4)AI-driven analysis and correlation of inspection data.The future developmental directions for comprehensive inspection trains are discussed finally.The CIT450’s approach to real-time railway health monitoring can enrich traditional inspection means,operational,and maintenance methods by enhancing inspection efficiency and automating railway maintenance.