期刊文献+
共找到35篇文章
< 1 2 >
每页显示 20 50 100
Development of the IAP Dynamic Global Vegetation Model 被引量:19
1
作者 ZENG Xiaodong LI Fang SONG Xiang 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2014年第3期505-514,共10页
ABSTRACT The lAP Dynamic Global Vegetation Model (IAP-DGVM) has been developed to simulate the distribution and structure of global vegetation within the framework of Earth System Models. It incorporates our group... ABSTRACT The lAP Dynamic Global Vegetation Model (IAP-DGVM) has been developed to simulate the distribution and structure of global vegetation within the framework of Earth System Models. It incorporates our group's recent developments of major model components such as the shrub sub-model, establishment and competition parameterization schemes, and a process-based fire parameterization of intermediate complexity. The model has 12 plant functional types, including seven tree, two shrub, and three grass types, plus bare soil. Different PFTs are allowed to coexist within a grid cell, and their state variables are updated by various governing equations describing vegetation processes from fine-scale biogeophysics and biogeochemistry, to individual and population dynamics, to large-scale biogeography. Environmental disturbance due to fire not only affects regional vegetation competition, but also influences atmospheric chemistry and aerosol emissions. Simulations under observed atmospheric conditions showed that the model can correctly reproduce the global distribution of trees, shrubs, grasses, and bare soil. The simulated global dominant vegetation types reproduce the transition from forest to grassland (savanna) in the tropical region, and from forest to shrubland in the boreal region, but overestimate the region of temperate forest. 展开更多
关键词 Dynamic Global vegetation model individual and population dynamics BIOGEOGRAPHY DISTURBANCE
在线阅读 下载PDF
Evaluating the Dependence of Vegetation on Climate in an Improved Dynamic Global Vegetation Model 被引量:13
2
作者 曾晓东 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2010年第5期977-991,共15页
The capability of an improved Dynamic Global Vegetation Model (DGVM) in reproducing the impact of climate on the terrestrial ecosystem is evaluated. The new model incorporates the Community Land Model- DGVM (CLM3.0... The capability of an improved Dynamic Global Vegetation Model (DGVM) in reproducing the impact of climate on the terrestrial ecosystem is evaluated. The new model incorporates the Community Land Model- DGVM (CLM3.0-DGVM) with a submodel for temperate and boreal shrubs, as well as other revisions such as the "two-leaf" scheme for photosynthesis and the definition of fractional coverage of plant functional types (PFTs). Results show that the revised model may correctly reproduce the global distribution of temperate and boreal shrubs, and improves the model performance with more realistic distribution of di?erent vege- tation types. The revised model also correctly reproduces the zonal distributions of vegetation types. In reproducing the dependence of the vegetation distribution on climate conditions, the model shows that the dominant regions for trees, grasses, shrubs, and bare soil are clearly separated by a climate index derived from mean annual precipitation and temperature, in good agreement with the CLM4 surface data. The dominant plant functional type mapping to a two dimensional parameter space of mean annual temperature and precipitation also qualitatively agrees with the results from observations and theoretical ecology studies. 展开更多
关键词 dynamic global vegetation model community land model climate impact vegetation response
在线阅读 下载PDF
Improvements of a Dynamic Global Vegetation Model and Simulations of Carbon and Water at an Upland-Oak Forest 被引量:9
3
作者 毛嘉富 王斌 +3 位作者 戴永久 F.I.WOODWARD P.J.HANSON M.R.LOMAS 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2007年第2期311-322,共12页
The interest in the development and improvement of dynamic global vegetation models (DGVMs), which have the potential to simulate fluxes of carbon, water and nitrogen, along with changes in the vegetation dynamics, ... The interest in the development and improvement of dynamic global vegetation models (DGVMs), which have the potential to simulate fluxes of carbon, water and nitrogen, along with changes in the vegetation dynamics, within an integrated system, has been increasing. In this paper, some numerical schemes and a higher resolution soil texture dataset were employed to improve the Sheffield Dynamic Global Vegetation Model (SDGVM). Using eddy covariance-based measurements, we then tested the standard version of the SDGVM and the modified version of the SDGVM. Detailed observations of daily carbon and water fluxes made at the upland oak forest on the Walker Branch Watershed in Tennessee, USA offered a unique opportunity for these comparisons. The results revealed that the modified version of the SDGVM did a reasonable job of simulating the carbon and water flux and the variation of soil water content (SWC). However, at the end of the growing season, it failed to simulate the effect of the limitations on the soil respiration dynamics and as a result underestimated this respiration. It was also noted that the modified version overestimated the increase in the SWC following summer rainfall, which was attributed to an inadequate representation of the ground water and thermal cycle. 展开更多
关键词 dynamic global vegetation models terrestrial carbon and water fluxes Eddy covariance calibration
在线阅读 下载PDF
Evaluation of the New Dynamic Global Vegetation Model in CAS-ESM 被引量:9
4
作者 Jiawen ZHU Xiaodong ZENG +6 位作者 Minghua ZHANG Yongjiu DAI Duoying JI Fang LI Qian ZHANG He ZHANG Xiang SONG 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2018年第6期659-670,共12页
In the past several decades, dynamic global vegetation models(DGVMs) have been the most widely used and appropriate tool at the global scale to investigate vegetation-climate interactions. At the Institute of Atmosp... In the past several decades, dynamic global vegetation models(DGVMs) have been the most widely used and appropriate tool at the global scale to investigate vegetation-climate interactions. At the Institute of Atmospheric Physics, a new version of DGVM(IAP-DGVM) has been developed and coupled to the Common Land Model(CoLM) within the framework of the Chinese Academy of Sciences' Earth System Model(CAS-ESM). This work reports the performance of IAP-DGVM through comparisons with that of the default DGVM of CoLM(CoLM-DGVM) and observations. With respect to CoLMDGVM, IAP-DGVM simulated fewer tropical trees, more "needleleaf evergreen boreal tree" and "broadleaf deciduous boreal shrub", and a better representation of grasses. These contributed to a more realistic vegetation distribution in IAP-DGVM,including spatial patterns, total areas, and compositions. Moreover, IAP-DGVM also produced more accurate carbon fluxes than CoLM-DGVM when compared with observational estimates. Gross primary productivity and net primary production in IAP-DGVM were in better agreement with observations than those of CoLM-DGVM, and the tropical pattern of fire carbon emissions in IAP-DGVM was much more consistent with the observation than that in CoLM-DGVM. The leaf area index simulated by IAP-DGVM was closer to the observation than that of CoLM-DGVM; however, both simulated values about twice as large as in the observation. This evaluation provides valuable information for the application of CAS-ESM, as well as for other model communities in terms of a comparative benchmark. 展开更多
关键词 vegetation dynamics dynamic global vegetation model vegetation distribution carbon flux leaf area index
在线阅读 下载PDF
Impact of Spin-up Forcing on Vegetation States Simulated by a Dynamic Global Vegetation Model Coupled with a Land Surface Model 被引量:4
5
作者 李芳 曾晓东 +3 位作者 宋翔 田东晓 邵璞 张东凌 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2011年第4期775-788,共14页
A dynamic global vegetation model (DGVM) coupled with a land surface model (LSM) is generally initialized using a spin-up process to derive a physically-consistent initial condition. Spin-up forcing, which is the ... A dynamic global vegetation model (DGVM) coupled with a land surface model (LSM) is generally initialized using a spin-up process to derive a physically-consistent initial condition. Spin-up forcing, which is the atmospheric forcing used to drive the coupled model to equilibrium solutions in the spin-up process, varies across earlier studies. In the present study, the impact of the spin-up forcing in the initialization stage on the fractional coverages (FCs) of plant functional type (PFT) in the subsequent simulation stage are assessed in seven classic climate regions by a modified Community Land Model’s Dynamic Global Vegetation Model (CLM-DGVM). Results show that the impact of spin-up forcing is considerable in all regions except the tropical rainforest climate region (TR) and the wet temperate climate region (WM). In the tropical monsoon climate region (TM), the TR and TM transition region (TR-TM), the dry temperate climate region (DM), the highland climate region (H), and the boreal forest climate region (BF), where FCs are affected by climate non-negligibly, the discrepancies in initial FCs, which represent long-term cumulative response of vegetation to different climate anomalies, are large. Moreover, the large discrepancies in initial FCs usually decay slowly because there are trees or shrubs in the five regions. The intrinsic growth timescales of FCs for tree PFTs and shrub PFTs are long, and the variation of FCs of tree PFTs or shrub PFTs can affect that of grass PFTs. 展开更多
关键词 vegetation initial condition spin-up forcing Dynamic Global vegetation model Land Surface model
在线阅读 下载PDF
Investigation of Uncertainties of Establishment Schemes in Dynamic Global Vegetation Models 被引量:3
6
作者 ZENG Xiaodong LI Fang SONG Xiang 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2014年第1期85-94,共10页
In Dynamic Global Vegetation Models (DGVMs), the establishment of woody vegetation refers to flowering, fertiliza- tion, seed production, germination, and the growth of tree seedlings. It determines not only the pop... In Dynamic Global Vegetation Models (DGVMs), the establishment of woody vegetation refers to flowering, fertiliza- tion, seed production, germination, and the growth of tree seedlings. It determines not only the population densities but also other important ecosystem structural variables. In current DGVMs, establishments of woody plant functional types (PFTs) are assumed to be either the same in the same grid cell, or largely stochastic. We investigated the uncertainties in the competition of establishment among coexisting woody PFTs from three aspects: the dependence of PFT establishments on vegetation states; background establishment; and relative establishment potentials of different PFTs. Sensitivity experi- ments showed that the dependence of establishment rate on the fractional coverage of a PFT favored the dominant PFT by increasing its share in establishment. While a small background establishment rate had little impact on equilibrium states of the ecosystem, it did change the timescale required for the establishment of alien species in pre-existing forest due to their disadvantage in seed competition during the early stage of invasion. Meanwhile, establishment purely fiom background (the scheme commonly used in current DGVMs) led to inconsistent behavior in response to the change in PFT specification (e.g., number of PFTs and their specification). Furthermore, the results also indicated that trade-off between irtdividual growth and reproduction/colonization has significant influences on the competition of establishment. Hence, further development of es- tablishment parameterization in DGVMs is essential in reducing the uncertainties in simulations of both ecosystem structures and successions. 展开更多
关键词 Dynamic Global vegetation model uncertainty establishment scheme PFT classification fractional coverage
在线阅读 下载PDF
Preliminary Assessment of the Common Land Model Coupled with the IAP Dynamic Global Vegetation Model 被引量:1
7
作者 ZHU Jia-Wen ZENG Xiao-Dong +1 位作者 LI Fang SONG Xiang 《Atmospheric and Oceanic Science Letters》 CSCD 2014年第6期505-509,共5页
The Common Land Model(CoLM) was coupled with the IAP Dynamic Global Vegetation Model(IAPDGVM), and the performance of this combined CoLMIAP model was evaluated. Offline simulations using both the original Common Land ... The Common Land Model(CoLM) was coupled with the IAP Dynamic Global Vegetation Model(IAPDGVM), and the performance of this combined CoLMIAP model was evaluated. Offline simulations using both the original Common Land Model(CoLM-LPJ) and CoLM-IAP were conducted. The CoLM-IAP coupled model showed a significant improvement over CoLMLPJ, as the deciduous tree distribution decreased over temperate and boreal regions, while the distribution of evergreen trees increased over the tropics. Some biases in CoLM-LPJ were preserved, including the overestimation of evergreen trees in tropical savanna, the underestimation of boreal evergreen trees, and the absence of boreal shrubs. However, most of these biases did not exist in a further coupled simulation of IAP-DGVM with the Community Land Model(CLM), for which the parameters of IAP-DGVM were optimized. This implies that further improvement is needed to deal with the differences between CoLM and CLM in parameterizations of landbased physical and biochemical processes. 展开更多
关键词 dynamic global vegetation model land surface model vegetation fractional coverage CLIMATE
在线阅读 下载PDF
Progress of vegetation modelling and future research prospects
8
作者 Siqi LI Xu ZHANG +2 位作者 Zhengyao LU Jian NI Jianhua LU 《Science China Earth Sciences》 SCIE EI CAS CSCD 2024年第9期2718-2738,共21页
Terrestrial vegetation is a crucial component of the Earth system,and its changes not only represent one of the most distinct aspects of climate change but also exert significant feedback within the climate system by ... Terrestrial vegetation is a crucial component of the Earth system,and its changes not only represent one of the most distinct aspects of climate change but also exert significant feedback within the climate system by exchanging energy,moisture,and carbon dioxide.To quantitatively and mechanistically study climate-vegetation feedback,numerical vegetation models have been developed on the theory of ecophysiological constraints on plant functional types.The models eventually can simulate vegetation distribution and succession across different spatial and temporal scales,and associated terrestrial carbon cycle processes by categorizing vegetation into biomes according different plant functional types and their associated environmental factors.Here we review the developing history of vegetation models and provide recent advances and future directions.Before 21st century,static vegetation models,as developed statistical models,can only simulate equilibrated characteristics of vegetation distribution.In last several decades,Dynamic Global Vegetation Models(DGVMs)have been developed to simulate instantaneous responses of vegetation to climate change and associated dynamics,and can be coupled with Earth system models to investigate interactions among atmosphere,ocean,and land.DGVMs are also widely applied to investigate the dynamics accounting for changes in the geographic distribution patterns of land surface vegetation at different spatial and temporal scales and to assess the impacts of terrestrial carbon and water fluxes and land use changes.We suggest that future vegetation modeling could integrate with machine learning,and explore vegetation transient response and feedback as well as impacts of process hierarchies and human activities on climate and ecosystem. 展开更多
关键词 vegetation models DGVMs ECOSYSTEMS Plant functional types Plant functional traits
原文传递
Waveform LiDAR concepts and applications for potential vegetation phenology monitoring and modeling:a comprehensive review 被引量:5
9
作者 Eric Ariel L Salas 《Geo-Spatial Information Science》 SCIE CSCD 2021年第2期179-200,I0001,共23页
Researchers continually demonstrated through published literature how LiDAR could create unparalleled measurements of ecosystem structure and forest height.There are a number of studies conducted utilizing waveform Li... Researchers continually demonstrated through published literature how LiDAR could create unparalleled measurements of ecosystem structure and forest height.There are a number of studies conducted utilizing waveform LiDAR products for terrestrial monitoring,but those that deal specifically with the assessment of space-borne waveform LiDAR for monitoring and modeling of phenology is very limited.This review highlights the waveform LiDAR system and looks into satellite sensors that could link waveform LiDAR and vegetation phenology,such as the proposed NASA’s Global Ecosystem Dynamics Investigation(GEDI)and the Japanese Experimental Module(JEM)-borne LiDAR sensor named MOLI(Multi-footprint Observation LIDAR and Imager).Further,this work examines the richness and utility of the waveform returns and proposes a spline-function-derived model that could be exploited for estimating the leaf-shooting date.The new approach may be utilized for ecosystem-level phenological studies. 展开更多
关键词 ECOSYSTEMS gedi moli PHENOLOGY vegetation modeling waveform LiDAR
原文传递
Earth System Model FGOALS-s2: Coupling a Dynamic Global Vegetation and Terrestrial Carbon Model with the Physical Climate System Model 被引量:1
10
作者 王军 包庆 +3 位作者 Ning ZENG 刘屹岷 吴国雄 纪多颖 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2013年第6期1549-1559,共11页
Earth System Models (ESMs) are fundamental tools for understanding climate-carbon feedback. An ESM version of the Flexible Global Ocean-Atmosphere-Land System model (FGOALS) was recently developed within the IPCC ... Earth System Models (ESMs) are fundamental tools for understanding climate-carbon feedback. An ESM version of the Flexible Global Ocean-Atmosphere-Land System model (FGOALS) was recently developed within the IPCC AR5 Coupled Model Intercomparison Project Phase 5 (CMIP5) modeling framework, and we describe the development of this model through the coupling of a dynamic global vegetation and terrestrial carbon model with FGOALS-s2. The performance of the coupled model is evaluated as follows. The simulated global total terrestrial gross primary production (GPP) is 124.4 PgC yr-I and net pri- mary production (NPP) is 50.9 PgC yr-1. The entire terrestrial carbon pools contain about 2009.9 PgC, comprising 628.2 PgC and 1381.6 PgC in vegetation and soil pools, respectively. Spatially, in the tropics, the seasonal cycle of NPP and net ecosystem production (NEP) exhibits a dipole mode across the equator due to migration of the monsoon rainbelt, while the seasonal cycle is not so significant in Leaf Area Index (LAI). In the subtropics, especially in the East Asian monsoon region, the seasonal cycle is obvious due to changes in temperature and precipitation from boreal winter to summer. Vegetation productivity in the northern mid-high latitudes is too low, possibly due to low soil moisture there. On the interannual timescale, the terrestrial ecosystem shows a strong response to ENSO. The model- simulated Nifio3.4 index and total terrestrial NEP are both characterized by a broad spectral peak in the range of 2-7 years. Further analysis indicates their correlation coefficient reaches -0.7 when NEP lags the Nifio3.4 index for about 1-2 months. 展开更多
关键词 Earth System model (ESM) Dynamic Global vegetation model (DGVM) carbon cycle sea- sonal cycle interannual variability
在线阅读 下载PDF
Fractional vegetation cover estimation in heterogeneous areas by combining a radiative transfer model and a dynamic vegetation model 被引量:1
11
作者 Yixuan Tu Kun Jia +3 位作者 Shunlin Liang Xiangqin Wei Yunjun Yao Xiaotong Zhang 《International Journal of Digital Earth》 SCIE 2020年第4期487-503,共17页
A fractional vegetation cover(FVC)estimation method incorporating a vegetation growth model and a radiative transfer model was previously developed,which was suitable for FVC estimation in homogeneous areas because th... A fractional vegetation cover(FVC)estimation method incorporating a vegetation growth model and a radiative transfer model was previously developed,which was suitable for FVC estimation in homogeneous areas because the finer-resolution pixels corresponding to one coarseresolution FVC pixel were all assumed to have the same vegetation growth model.However,this assumption does not hold over heterogeneous areas,meaning that the method cannot be applied to large regions.Therefore,this study proposes a finer spatial resolution FVC estimation method applicable to heterogeneous areas using Landsat 8 Operational Land Imager reflectance data and Global LAnd Surface Satellite(GLASS)FVC product.The FVC product was first decomposed according to the normalized difference vegetation index from the Landsat 8 OLI data.Then,independent dynamic vegetation models were built for each finer-resolution pixel.Finally,the dynamic vegetation model and a radiative transfer model were combined to estimate FVC at the Landsat 8 scale.Validation results indicated that the proposed method(R^(2)=0.7757,RMSE=0.0881)performed better than either the previous method(R^(2)=0.7038,RMSE=0.1125)or a commonly used method involving look-up table inversions of the PROSAIL model(R^(2)=0.7457,RMSE=0.1249). 展开更多
关键词 Dynamic Bayesian network fractional vegetation cover global land surface satellite radiative transfer model dynamic vegetation model
原文传递
Combining European Earth Observation products with Dynamic Global Vegetation Models for estimating Essential Biodiversity Variables
12
作者 Mateus Dantas de Paula Marta Gómez Giménez +2 位作者 Aidin Niamir Martin Thurner Thomas Hickler 《International Journal of Digital Earth》 SCIE 2020年第2期262-277,共16页
Global,fast and accessible monitoring of biodiversity is one of the main pillars of the efforts undertaken in order to revert it loss.The Group on Earth Observations Biodiversity Observation Network(GEO-BON)provided a... Global,fast and accessible monitoring of biodiversity is one of the main pillars of the efforts undertaken in order to revert it loss.The Group on Earth Observations Biodiversity Observation Network(GEO-BON)provided an expert-based definition of the biological properties that should be monitored,the Essential Biodiversity Variables(EBVs).Initiatives to provide indicators for EBVs rely on global,freely available remote sensing(RS)products in combination with empirical models and field data,and are invaluable for decision making.In this study,we provide alternatives for the expansion and improvement of the EBV indicators,by suggesting current and future data from the European Space Agencýs COPERNICUS and explore the potential of RS-integrated Dynamic Global Vegetation Models(DGVMs)for the estimation of EBVs.Our review found that mainly due to the inclusion of the Sentinel constellation,Copernicus products have similar or superior potential for EBV indicator estimation in relation to their NASA counterparts.DGVMs simulate the ecosystem level EBVs(ecosystem function and structure),and when integrated with remote sensing data have great potential to not only offer improved estimation of current states but to provide projection of ecosystem impacts.We suggest that focus on producing EBV relevant outputs should be a priority within the research community,to support biodiversity preservation efforts. 展开更多
关键词 Dynamic Global vegetation modelling remote sensing ecosystem dynamics Copernicus Programme Essential Biodiversity Variables
原文传递
Analyzing and modeling the coverage of vegetation in the Qaidam Basin of China: The role of spatial autocorrelation 被引量:8
13
作者 ZHU Wenbin JIA Shaofeng +1 位作者 LU Aifeng YAN Tingting 《Journal of Geographical Sciences》 SCIE CSCD 2012年第2期346-358,共13页
Relationship between vegetation and environmental factors has always been a major topic in ecology, but it has also been an important way to reveal vegetation's dynamic response to and feedback effects on climate cha... Relationship between vegetation and environmental factors has always been a major topic in ecology, but it has also been an important way to reveal vegetation's dynamic response to and feedback effects on climate change. For the special geographical location and climatic characteristics of the Qaidam Basin, with the support of traditional and remote sensing data, in this paper a vegetation coverage model was established. The quantitative prediction of vegetation coverage by five environmental factors was initially realized through multiple stepwise regression (MSR) models. However, there is significant multicollinearity among these five environmental factors, which reduces the performance of the MSR model. Then through the introduction of the Moran Index, an indicator that reflects the spatial autocorrelation of vegetation distribution, only two variables of average annual rainfall and local Moran Index were used in the final establishment of the vegetation coverage model. The results show that there is significant spatial autocorrelation in the distribution of vegetation. The role of spatial autocorrelation in the establishment of vegetation coverage model has not only improved the model fitting R2 from 0.608 to 0.656, but also removed the multicollinearity among independents. 展开更多
关键词 vegetation coverage model spatial autocorrelation Moran Index NDVI Qinghai-Tibet Plateau
原文传递
Assimilation of NDVI data in a land surface-Vegetation model for leaf area index predictions in a tree-grass ecosystem
14
作者 Nicola Montaldo Andrea Gaspa Roberto Corona 《International Journal of Digital Earth》 SCIE EI 2023年第1期3810-3837,共28页
Periodic observations of vegetation index,such as the normalized difference vegetation index(NDVI),can be used for data assimilation in heterogenous ecosystems.Indeed,the new Sentinel 2 Multispectral instrument and La... Periodic observations of vegetation index,such as the normalized difference vegetation index(NDVI),can be used for data assimilation in heterogenous ecosystems.Indeed,the new Sentinel 2 Multispectral instrument and Landsat 8 Operational Land Imager sensor data are available at such high temporal and spatial resolutions that can be used to detect the patches of the main vegetation components(grass and trees)of heterogenous ecosystems,and capture their dynamics.We demonstrate the possibility to merge grass and tree NDVI observations and models,to optimally provide robust predictions of grass and tree leaf area index.The proposed assimilation approach assimilates NDVI data through the Ensemble Kalman filter(EnKF)and dynamically calibrates a key vegetation dynamic model parameter,the maintenance respiration coeffcient(ma).In the presence of large bias of the grass and tree ma base values,only the use of the proposed assimilation approach removes the large bias in the biomass balance,dynamically calibrating maintenance respiration coefficients,and corrects the model.The performance of a land surface-vegetation model was improved by assimilating observations of NDVl.The effective impact of the proposed assimilation approach on the evapotranspiration and CO_(2) uptake predictions in the heterogenous ecosystem is also demonstrated. 展开更多
关键词 Data assimilation leaf area index heterogenous ecosystem vegetation dynamic model Landsat 8 Sentinel 2
原文传递
Responses of Vegetation and Primary Production in North-South Transect of Eastern China to Global Change Under Land Use Constraint 被引量:9
15
作者 高琼 李晓兵 杨秀生 《Acta Botanica Sinica》 CSCD 2003年第11期1274-1284,共11页
A regional model of vegetation dynamics was revised to include land use as a constraint to vegetation dynamics and primary production processes. The model was applied to a forest transect in eastern China (NSTEC, Nort... A regional model of vegetation dynamics was revised to include land use as a constraint to vegetation dynamics and primary production processes. The model was applied to a forest transect in eastern China (NSTEC, North-South transect of eastern China) to investigate the responses of the transect to possible future climatic change. The simulation result indicated that land use has profound effects on vegetation transition and primary production. In particular, land use reduced competition among vegetation classes and tended to result in less evergreen broadleaf forests but more shrubs and grasses in the transect area. The simulation runs with land use constraint also gave much more realistic estimation about net primary productivity as well as responses of the productivity to future climatic change along the transect. The simulations for future climate scenarios projected by general circulation models (GCM) with doubled atmospheric CO2 concentration predicted that deciduous broadleaf forests would increase, but conifer forests, shrubs and grasses would decrease. The overall effects of doubling CO2 and climatic changes on NSTEC were to produce an increased net primary productivity (NPP) at equilibrium for all seven GCM scenarios. The predicted range of NPP variation in the north is much larger than that in the south. 展开更多
关键词 climatic change terrestrial ecosystems vegetation model net primary productivity (NPP)
在线阅读 下载PDF
松嫩平原玉米秸秆遥感估算及其保护性耕作潜力分析
16
作者 卓开锃 杨凤芸 杜嘉 《地理科学》 北大核心 2025年第9期2096-2106,共11页
本研究基于Google Earth Engine(GEE)平台,结合Sentinel-2时间序列遥感影像、气温、辐射数据以及文献中的收获指数,应用改进的Vegetation Photosynthesis Model(VPM)对松嫩平原的秸秆产量进行了估算。遥感影像用于提取植被生长和水分状... 本研究基于Google Earth Engine(GEE)平台,结合Sentinel-2时间序列遥感影像、气温、辐射数据以及文献中的收获指数,应用改进的Vegetation Photosynthesis Model(VPM)对松嫩平原的秸秆产量进行了估算。遥感影像用于提取植被生长和水分状况,温度与辐射数据则用于模拟模型中的生物物理过程。模型验证方面,研究通过实测数据和县级统计数据对遥感估算结果进行了验证。在此基础上,依据保护性耕作的定义和实施条件,结合估算的秸秆产量和气候数据,分析了松嫩平原的保护性耕作潜力。研究结果表明,2022年秸秆估算产量与县级统计数据的相关系数R^(2)为0.93,均方根误差(RMSE)为17.52万t;实测与估算的秸秆产量相关系数R^(2)为0.62,RMSE为936.4 kg/hm^(2),改进的VPM模型在秸秆产量估算中的准确性较好。基于气候和秸秆产量条件,松嫩平原有94.93%的区域适宜进行保护性耕作。研究证实了VPM模型在玉米(Zea mays)秸秆产量估算中的有效性,并对松嫩平原的保护性耕作潜力进行了评估。研究可为秸秆资源的综合利用与区域保护性耕作的实施提供科学数据支持,为农业可持续发展提供理论依据。 展开更多
关键词 vegetation Photosynthesis model(VPM) Sentinel-2 秸秆产量 保护性耕作潜力
原文传递
Sensitivity of the Carbon Storage of Potential Vegetation to Historical Climate Variability and CO_2 in Continental China 被引量:6
17
作者 毛嘉富 王斌 戴永久 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2009年第1期87-100,共14页
The interest in the national levels of the terrestrial carbon sink and its spatial and temporal variability with the climate and CO2 concentrations has been increasing. How the climate and the increasing atmospheric C... The interest in the national levels of the terrestrial carbon sink and its spatial and temporal variability with the climate and CO2 concentrations has been increasing. How the climate and the increasing atmospheric CO2 concentrations in the last century affect the carbon storage in continental China was investigated in this study by using the Modified Sheffield Dynamic Global Vegetation Model (M-SDGVM). The estimates of the M-SDGVM indicated that during the past 100 years a combination of increasing CO2 with historical temperature and precipitation variability in continental China have caused the total vegetation carbon storage to increase by 2.04 Pg C, with 2.07 Pg C gained in the vegetation biomass but 0.03 Pg C lost from the organic soil carbon matter. The increasing CO2 concentration in the 20th century is primarily responsible for the increase of the total potential vegetation carbon. These factorial experiments show that temperature variability alone decreases the total carbon storage by 1.36 Pg C and precipitation variability alone causes a loss of 1.99 Pg C. The effect of the increasing CO2 concentration alone increased the total carbon storage in the potential vegetation of China by 3.22 Pg C over the past 100 years. With the changing of the climate, the CO2 fertilization on China's ecosystems is the result of the enhanced net biome production (NBP), which is caused by a greater stimulation of the gross primary production (GPP) than the total soil-vegetation respiration. Our study also shows notable interannual and decadal variations in the net carbon exchange between the atmosphere and terrestrial ecosystems in China due to the historical climate variability. 展开更多
关键词 dynamic global vegetation models China terrestrial carbon storage climate-vegetation interaction CO2 fertilization
在线阅读 下载PDF
Assessing the vulnerability of ecosystems to climate change based on climate exposure, vegetation stability and productivity 被引量:5
18
作者 Kai Xu Xiangping Wang +1 位作者 Chao Jiang Osbert Jianxin Sun 《Forest Ecosystems》 SCIE CSCD 2020年第3期315-326,共12页
Background: Global warming has brought many negative impacts on terrestrial ecosystems, which makes the vulnerability of ecosystems one of the hot issues in current ecological research. Here, we proposed an assessment... Background: Global warming has brought many negative impacts on terrestrial ecosystems, which makes the vulnerability of ecosystems one of the hot issues in current ecological research. Here, we proposed an assessment method based on the IPCC definition of vulnerability. The exposure to future climate was characterized using a moisture index(MI) that integrates the effects of temperature and precipitation. Vegetation stability, defined as the proportion of intact natural vegetation that remains unchanged under changing climate, was used together with vegetation productivity trend to represent the sensitivity and adaptability of ecosystems. Using this method, we evaluated the vulnerability of ecosystems in Southwestern China under two future representative concentration pathways(RCP 4.5 and RCP 8.5) with MC2 dynamic global vegetation model.Results:(1) Future(2017–2100) climate change will leave 7.4%(under RCP 4.5) and 57.4% of(under RCP 8.5) of areas under high or very high vulnerable climate exposure;(2) in terms of vegetation stability, nearly 45% of the study area will show high or very high vulnerability under both RCPs. Beside the impacts of human disturbance on natural vegetation coverage(vegetation intactness), climate change will cause obvious latitudinal movements in vegetation distribution, but the direction of movements under two RCPs were opposite due to the difference in water availability;(3) vegetation productivity in most areas will generally increase and remain a low vulnerability in the future;(4) an assessment based on the above three aspects together indicated that future climate change will generally have an adverse impact on all ecosystems in Southwestern China, with non-vulnerable areas account for only about 3% of the study area under both RCPs. However, compared with RCP 4.5, the areas with mid-and highvulnerability under RCP 8.5 scenario increased by 13% and 16%, respectively.Conclusion: Analyses of future climate exposure and projected vegetation distribution indicate widespread vulnerability of ecosystems in Southwestern China, while vegetation productivity in most areas will show an increasing trend to the end of twenty-first century. Based on new climate indicators and improved vulnerability assessment rules, our method provides an extra option for a more comprehensive evaluation of ecosystem vulnerability, and should be further tested at larger spatial scales in order to provide references for regional, or even global, ecosystem conservation works. 展开更多
关键词 Climate change Ecosystem vulnerability Dynamic global vegetation model vegetation stability vegetation productivity Southwestern China
在线阅读 下载PDF
Mapping Spatial Distribution Characteristics of Lineaments Extracted from Remote Sensing Image Using Fractal and Multifractal Models 被引量:7
19
作者 Cheng Lyu Qiuming Cheng +1 位作者 Renguang Zuo Xueping Wang 《Journal of Earth Science》 SCIE CAS CSCD 2017年第3期507-515,共9页
Mapping mineral prospectivity in vegetated areas is a challenge. For this reason, we aimed to map spatial distribution characteristics of linear structures detected in remote sensing images using fractal and multifrac... Mapping mineral prospectivity in vegetated areas is a challenge. For this reason, we aimed to map spatial distribution characteristics of linear structures detected in remote sensing images using fractal and multifractal models. The selected study area was the Pinghe District of the Fujian Province(China), located in the Shanghang-Yunxiao polymetallic and alunite ore belt(within the Wuyishan polymetallic belt), where mineral resources such as copper, molybdenum, gold, silver, iron, lead, zinc, alunite and pyrophyllite have been discovered. The results of our study showed that:(1) the values of fractal dimension for all lineaments, NW-trending lineaments, and NE-trending lineaments, are 1.36, 1.32, and 1.23, respectively, indicating that these lineaments are statistically self-similar;(2) the fractal dimensions of the spatial distribution of the linear structures in the four selected hydrothermal-type ore deposits of the Pinghe District, named Zhongteng, Panchi, Xiaofanshan and Fanshan, are 1.43, 1.52, 1.37 and 1.37, respectively, which are higher than the mean value in South China;(3) the spatial distribution of the linear structures extracted from the remote sensing image and displayed by the contour map of fractal dimensions, correlates well with the known hydrothermal ore deposits; and(4) the results of the anomaly map decomposed by the spectrum-area(S-A) multifractal model is much better than the original fractal dimension contour map, which showed most of the known hydrothermal-type deposits occur in the high anomalous area. It is suggested that a high step tendency possibly matches with the boundary of the volcanic edifice and the deep fault controlling the development of the rock mass and the volcanic edifice. The complexity of the spatial distribution of mapped lineations(faults) in the Pinghe District, characterized by high values in the anomaly map, may be associated with the hydrothermal polymetallic ore mineralization in the study area. 展开更多
关键词 fractal model ETM+ data vegetation coverage area Pinghe molybdenum deposit
原文传递
Modeling Gross Primary Production by Integrating Satellite Data and Coordinated Flux Measurements in Arid and Semi-Arid China 被引量:1
20
作者 WANG He-Song JIA Gen-Suo +2 位作者 FENG Jin-Ming ZHAO Tian-Bao MA Zhu-Guo 《Atmospheric and Oceanic Science Letters》 2010年第1期7-13,共7页
Assessing large-scale patterns of gross primary production (GPP) in arid and semi-arid (ASA) areas is important for both scientific and practical purposes.Remote sensing-based models,which integrate satellite data wit... Assessing large-scale patterns of gross primary production (GPP) in arid and semi-arid (ASA) areas is important for both scientific and practical purposes.Remote sensing-based models,which integrate satellite data with input from ground-based meteorological measurements and vegetation characteristics,improve spatially extended estimates of vegetation productivity with high accuracy.In this study,the authors simulated GPP in ASA areas by integrating moderate resolution imaging spectral radiometer (MODIS) data with eddy covariance and meteorological measurements at the flux tower sites using the Vegetation Photosynthesis Model (VPM),which is a remote sensing-based model for analyzing the spatial pattern of GPP in different land cover types.The field data were collected by coordinating observations at nine stations in 2008.The results indicate that in the region during the growing season GPP was highest in cropland sites,second highest in woodland sites,and lowest in grassland sites.VPM captured the temporal and spatial characteristics of GPP for different land covers in ASA areas.Further,Enhanced Vegetation Index (EVI) had a strong liner relationship with GPP in densely vegetated areas,while the Normalized Difference Vegetation Index (NDVI) had a strong liner relationship with GPP over less dense vegetation.This study demonstrates the potential of satellite-driven models for scaling-up GPP,which is a key component for studying the carbon cycle at regional and global scales. 展开更多
关键词 gross primary production vegetation photo- synthesis model eddy covariance remote sensing coordinated observation arid and semiarid areas
在线阅读 下载PDF
上一页 1 2 下一页 到第
使用帮助 返回顶部