This study investigates the impact of vegetation-climate feedback on the global land monsoon system during the Last Interglacial(LIG,127000 years BP)and the mid-Holocene(MH,6000 years BP)using the earth system model E...This study investigates the impact of vegetation-climate feedback on the global land monsoon system during the Last Interglacial(LIG,127000 years BP)and the mid-Holocene(MH,6000 years BP)using the earth system model EC-Earth3.Our findings indicate that vegetation changes significantly influence the global monsoon area and precipitation patterns,especially in the North African and Indian monsoon regions.The North African monsoon region experienced the most substantial increase in vegetation during both the LIG and MH,resulting in significant increases in monsoonal precipitation by 9.8%and 6.0%,respectively.The vegetation feedback also intensified the Saharan Heat Low,strengthened monsoonal flows,and enhanced precipitation over the North African monsoon region.In contrast,the Indian monsoon region exhibited divergent responses to vegetation changes.During the LIG,precipitation in the Indian monsoon region decreased by 2.2%,while it increased by 1.6%during the MH.These differences highlight the complex and region-specific impacts of vegetation feedback on monsoon systems.Overall,this study demonstrates that vegetation feedback exerts distinct influences on the global monsoon during the MH and LIG.These findings highlight the importance of considering vegetation-climate feedback in understanding past monsoon variability and in predicting future climate change impacts on monsoon systems.展开更多
Studying the vegetation feedback during warm periods of the past can lead to better understanding of those in the future.In this study,we conducted several simulations to analyze vegetation feedback during the mid-Pli...Studying the vegetation feedback during warm periods of the past can lead to better understanding of those in the future.In this study,we conducted several simulations to analyze vegetation feedback during the mid-Pliocene warm period.The results indicate that the main features of vegetation change in the mid-Pliocene were a northward shift of needleleaf tree,an expansion of broadleaf tree and shrub,and a northward expansion of grass,as compared to the pre-industrial period.The global annual mean warming ratio caused by vegetation feedback was 12.1%,and this warming ratio was much larger in northern middle and high latitudes.The warming caused by vegetation change was directly related to the surface albedo change and was further amplified by snow/sea ice-albedo feedback.展开更多
A global atmospheric general circulation model and an asynchronously coupled global atmosphere-biome model are used to simulate vegetation feedback at the mid-Pliocene approximately 3.3 to 3.0 million years ago.For th...A global atmospheric general circulation model and an asynchronously coupled global atmosphere-biome model are used to simulate vegetation feedback at the mid-Pliocene approximately 3.3 to 3.0 million years ago.For that period,the simulated vegetation differed from present conditions at 62% of the global ice-free land surface.Vegetation feedback had little overall impact on the global climate of the mid-Pliocene.At the regional scale,however,the interactive vegetation led to statistically significant increases in annual temperature over Greenland,the high latitudes of North America,the mid-high latitudes of eastern Eurasia,and westem Tibet,and reductions in most of the land areas at low latitudes,owing to vegetation-induced changes in surface albedo.展开更多
基金supported by the Swedish Research Council(Vetenskapsradet,Grant No.202203129)the Project of Youth Science and Technology Fund of Gansu Province(Grant No.24JRRA439)partially funded by the Swedish Research Council(Vetenskapsradet,Grant No.2022-06725)。
文摘This study investigates the impact of vegetation-climate feedback on the global land monsoon system during the Last Interglacial(LIG,127000 years BP)and the mid-Holocene(MH,6000 years BP)using the earth system model EC-Earth3.Our findings indicate that vegetation changes significantly influence the global monsoon area and precipitation patterns,especially in the North African and Indian monsoon regions.The North African monsoon region experienced the most substantial increase in vegetation during both the LIG and MH,resulting in significant increases in monsoonal precipitation by 9.8%and 6.0%,respectively.The vegetation feedback also intensified the Saharan Heat Low,strengthened monsoonal flows,and enhanced precipitation over the North African monsoon region.In contrast,the Indian monsoon region exhibited divergent responses to vegetation changes.During the LIG,precipitation in the Indian monsoon region decreased by 2.2%,while it increased by 1.6%during the MH.These differences highlight the complex and region-specific impacts of vegetation feedback on monsoon systems.Overall,this study demonstrates that vegetation feedback exerts distinct influences on the global monsoon during the MH and LIG.These findings highlight the importance of considering vegetation-climate feedback in understanding past monsoon variability and in predicting future climate change impacts on monsoon systems.
基金supported by the Strategic Priority Research Program (Grant No.XDB03020602) of the Chinese Academy of Sciencesthe National Natural Science Foundation of China (Grant Nos. 41175072, 41222034 and 41305073)
文摘Studying the vegetation feedback during warm periods of the past can lead to better understanding of those in the future.In this study,we conducted several simulations to analyze vegetation feedback during the mid-Pliocene warm period.The results indicate that the main features of vegetation change in the mid-Pliocene were a northward shift of needleleaf tree,an expansion of broadleaf tree and shrub,and a northward expansion of grass,as compared to the pre-industrial period.The global annual mean warming ratio caused by vegetation feedback was 12.1%,and this warming ratio was much larger in northern middle and high latitudes.The warming caused by vegetation change was directly related to the surface albedo change and was further amplified by snow/sea ice-albedo feedback.
基金supported by the Knowledge Innovation Program of the Chinese Academy of Sciences(KZCX2-EW-QN202)the National Natural Science Foundation of China(40975050 and41175072)
文摘A global atmospheric general circulation model and an asynchronously coupled global atmosphere-biome model are used to simulate vegetation feedback at the mid-Pliocene approximately 3.3 to 3.0 million years ago.For that period,the simulated vegetation differed from present conditions at 62% of the global ice-free land surface.Vegetation feedback had little overall impact on the global climate of the mid-Pliocene.At the regional scale,however,the interactive vegetation led to statistically significant increases in annual temperature over Greenland,the high latitudes of North America,the mid-high latitudes of eastern Eurasia,and westem Tibet,and reductions in most of the land areas at low latitudes,owing to vegetation-induced changes in surface albedo.