With the development of More Electric Aircraft(MEA),the Permanent Magnet Synchronous Motor(PMSM)is widely used in the MEA field.The PMSM control system of MEA needs to consider the system reliability,and the inverter ...With the development of More Electric Aircraft(MEA),the Permanent Magnet Synchronous Motor(PMSM)is widely used in the MEA field.The PMSM control system of MEA needs to consider the system reliability,and the inverter switching frequency of the inverter is one of the impacting factors.At the same time,the control accuracy of the system also needs to be considered,and the torque ripple and flux ripple are usually considered to be its important indexes.This paper proposes a three-stage series Model Predictive Torque and Flux Control system(three-stage series MPTFC)based on fast optimal voltage vector selection to reduce switching frequency and suppress torque ripple and flux ripple.Firstly,the analytical model of the PMSM is established and the multi-stage series control method is used to reduce the switching frequency.Secondly,selectable voltage vectors are extended from 8 to 26 and a fast selection method for optimal voltage vector sectors is designed based on the hysteresis comparator,which can suppress the torque ripple and flux ripple to improve the control accuracy.Thirdly,a three-stage series control is obtained by expanding the two-stage series control using the P-Q torque decomposition theory.Finally,a model predictive torque and flux control experimental platform is built,and the feasibility and effectiveness of this method are verified through comparison experiments.展开更多
The total nitrogen(TN)is a major factor contributing to eutrophication and is a crucial parameter in assessing surface water quality.Accurate and rapid methods are crucial for determining the TN content in water.Herei...The total nitrogen(TN)is a major factor contributing to eutrophication and is a crucial parameter in assessing surface water quality.Accurate and rapid methods are crucial for determining the TN content in water.Herein,a fast,highly sensitive,and pollution-free approach is proposed,which combines ultraviolet(UV)absorption spectroscopy with Bayesian optimized least squares support vector machine(LSSVM)for detecting TN content in water.Water samples collected from sampling points near the Yangtze River basin in Chongqing of China were analyzed using national standard methods to measure TN content as reference values.The prediction of TN content in water was achieved by integrating the UV absorption spectra of water samples with LSSVM.To make the model quickly and accurately select the optimal parameters to improve the accuracy of the prediction model,the Bayesian optimization(BO)algorithm was used to optimize the parameters of the LSSVM.Results show that the prediction model performs well in predicting TN concentration,with a high coefficient of prediction determination(R^(2)=0.9413)and a low root mean square error of prediction(RMSE=0.0779 mg/L).Comparative analysis with previous studies indicates that the model used in this paper achieves lower prediction errors and superior predictive performance.展开更多
In locally convex Hausdorff topological vector spaces,ε-strongly efficient solutions for vector optimization with set-valued maps are discussed.Firstly,ε-strongly efficient point of set is introduced.Secondly,under ...In locally convex Hausdorff topological vector spaces,ε-strongly efficient solutions for vector optimization with set-valued maps are discussed.Firstly,ε-strongly efficient point of set is introduced.Secondly,under the nearly cone-subconvexlike set-valued maps,the theorem of scalarization for vector optimization is obtained.Finally,optimality conditions of ε-strongly efficient solutions for vector optimization with generalized inequality constraints and equality constraints are obtained.展开更多
The robust parameter design method is a traditional approach to robust experimental design that seeks to obtain the optimal combination of factors/levels. To overcome some of the defects of the inflatable wing paramet...The robust parameter design method is a traditional approach to robust experimental design that seeks to obtain the optimal combination of factors/levels. To overcome some of the defects of the inflatable wing parameter design method, this paper proposes an optimization design scheme based on orthogonal testing and support vector machines (SVMs). Orthogonal testing design is used to estimate the appropriate initial value and variation domain of each variable to decrease the number of iterations and improve the identification accuracy and efficiency. Orthogonal tests consisting of three factors and three levels are designed to analyze the parameters of pressure, uniform applied load and the number of chambers that affect the bending response of inflatable wings. An SVM intelligent model is established and limited orthogonal test swatches are studied. Thus, the precise relationships between each parameter and product quality features, as well the signal-to-noise ratio (SNR), can be obtained. This can guide general technological design optimization.展开更多
The definitions of cone-subconvexlike set-valued maps and generalized cone-subconvexlike set-valued maps in topological vector spaces are defined by using the relative interiors of ordering cone. The relationships bet...The definitions of cone-subconvexlike set-valued maps and generalized cone-subconvexlike set-valued maps in topological vector spaces are defined by using the relative interiors of ordering cone. The relationships between the two classes of set-valued maps are investigated, and some properties of them are shown. A Gordan type alternative theorem under the assumption of generalized cone-subconvexlikeness of set-valued maps is proved by applying convex separation theorems involving the relative interiors in infinite dimensional spaces. Finally a necessary optimality condition theorem is shown for a general kind of set-valued vector optimization in a sense of weak E-minimizer.展开更多
The aim of this paper is to study the relationship among Minty vector variational-like inequality problem, Stampacchia vector variational-like inequality problem and vector optimization problem involving (G, α)-invex...The aim of this paper is to study the relationship among Minty vector variational-like inequality problem, Stampacchia vector variational-like inequality problem and vector optimization problem involving (G, α)-invex functions. Furthermore, we establish equivalence among the solutions of weak formulations of Minty vector variational-like inequality problem, Stampacchia vector variational-like inequality problem and weak efficient solution of vector optimization problem under the assumption of (G, α)-invex functions. Examples are provided to elucidate our results.展开更多
In this note,new classes of generalized type-I functions are introduced for functions between Banach spaces.These generalized type-I functions are then utilized to establish sufficient optimality conditions and dualit...In this note,new classes of generalized type-I functions are introduced for functions between Banach spaces.These generalized type-I functions are then utilized to establish sufficient optimality conditions and duality results for a vector optimization problem with functions defined on a Banach space.展开更多
According to the actual requirements,profile and rolling energy consumption are selected as objective functions of rolling schedule optimization for tandem cold rolling.Because of mechanical wear,roll diameter has som...According to the actual requirements,profile and rolling energy consumption are selected as objective functions of rolling schedule optimization for tandem cold rolling.Because of mechanical wear,roll diameter has some uncertainty during the rolling process,ignoring which will cause poor robustness of rolling schedule.In order to solve this problem,a robust multi-objective optimization model of rolling schedule for tandem cold rolling was established.A differential evolution algorithm based on the evolutionary direction was proposed.The algorithm calculated the horizontal angle of the vector,which was used to choose mutation vector.The chosen vector contained converging direction and it changed the random mutation operation in differential evolution algorithm.Efficiency of the proposed algorithm was verified by two benchmarks.Meanwhile,in order to ensure that delivery thicknesses have descending order like actual rolling schedule during evolution,a modified Latin Hypercube Sampling process was proposed.Finally,the proposed algorithm was applied to the model above.Results showed that profile was improved and rolling energy consumption was reduced compared with the actual rolling schedule.Meanwhile,robustness of solutions was ensured.展开更多
Dynamic optimization problems(DOPs) described by differential equations are often encountered in chemical engineering. Deterministic techniques based on mathematic programming become invalid when the models are non-di...Dynamic optimization problems(DOPs) described by differential equations are often encountered in chemical engineering. Deterministic techniques based on mathematic programming become invalid when the models are non-differentiable or explicit mathematical descriptions do not exist. Recently, evolutionary algorithms are gaining popularity for DOPs as they can be used as robust alternatives when the deterministic techniques are invalid. In this article, a technology named ranking-based mutation operator(RMO) is presented to enhance the previous differential evolution(DE) algorithms to solve DOPs using control vector parameterization. In the RMO, better individuals have higher probabilities to produce offspring, which is helpful for the performance enhancement of DE algorithms. Three DE-RMO algorithms are designed by incorporating the RMO. The three DE-RMO algorithms and their three original DE algorithms are applied to solve four constrained DOPs from the literature. Our simulation results indicate that DE-RMO algorithms exhibit better performance than previous non-ranking DE algorithms and other four evolutionary algorithms.展开更多
Owing to the multipath effect, the source localization in shallow water has been an area of active interest. However, most methods for source localization in shallow water are sensitive to the assumed model of the und...Owing to the multipath effect, the source localization in shallow water has been an area of active interest. However, most methods for source localization in shallow water are sensitive to the assumed model of the underwater environment and have poor robustness against the underwater channel uncertainty, which limit their further application in practical engineering. In this paper, a new method of source localization in shallow water, based on vector optimization concept, is described, which is highly robust against environmental factors affecting the localization, such as the channel depth, the bottom reflection coefficients, and so on. Through constructing the uncertainty set of the source vector errors and extracting the multi-path sound rays from the sea surface and bottom, the proposed method can accurately localize one or more sources in shallow water dominated by multipath propagation. It turns out that the natural formulation of our approach involves minimization of two quadratic functions subject to infinitely many nonconvex quadratic constraints. It shows that this problem (originally intractable) can be reformulated in a convex form as the so-called second-order cone program (SOCP) and solved efficiently by using the well-established interior point method, such as the sottware tool, SeDuMi. Computer simulations show better performance of the proposed method as compared with existing algorithms and establish a theoretical foundation for the practical engineering application.展开更多
Let (E,ξ)=ind(En,ξn) be an inductive limit of a sequence (En,ξn)n∈N of locally convex spaces and let every step (En,ξn) be endowed with a partial order by a pointed convex (solid) cone Sn. In the framew...Let (E,ξ)=ind(En,ξn) be an inductive limit of a sequence (En,ξn)n∈N of locally convex spaces and let every step (En,ξn) be endowed with a partial order by a pointed convex (solid) cone Sn. In the framework of inductive limits of partially ordered locally convex spaces, the notions of lastingly efficient points, lastingly weakly efficient points and lastingly globally properly efficient points are introduced. For several ordering cones, the notion of non-conflict is introduced. Under the requirement that the sequence (Sn)n∈N of ordering cones is non-conflicting, an existence theorem on lastingly weakly efficient points is presented. From this, an existence theorem on lastingly globally properly efficient points is deduced.展开更多
In this paper, we introduce some new systems of generalized vector quasi-variational inclusion problems and system of generalized vector ideal (resp., proper, Pareto, weak) quasi-optimization problems in locally FC-...In this paper, we introduce some new systems of generalized vector quasi-variational inclusion problems and system of generalized vector ideal (resp., proper, Pareto, weak) quasi-optimization problems in locally FC-uniform spaces without convexity structure. By using the KKM type theorem and Himmelberg type fixed point theorem proposed by the author, some new existence theorems of solutions for the systems of generalized vector quasi-variational inclusion problems are proved. As to its applications, we obtain some existence results of solutions for systems of generalized vector quasi-optimization problems.展开更多
We presented Mathematical apparatus of the choice of optimum parameters of technical, technological systems and materials on the basis of vector optimization. We have considered the formulation and solution of three t...We presented Mathematical apparatus of the choice of optimum parameters of technical, technological systems and materials on the basis of vector optimization. We have considered the formulation and solution of three types of tasks presented below. First, the problem of selecting the optimal parameters of technical systems depending on the functional characteristics of the system. Secondly, the problem of selecting the optimal parameters of the process depending on the technological characteristics of the process. Third, the problem of choosing the optimal structure of the material depending on the functional characteristics of this material. The statement of all problems is made in the form of vector problems of mathematical (nonlinear) programming. The theory and the principle of optimality of the solution of vector tasks it is explained in work of https://rdcu.be/bhZ8i. The implementation of the methodology is shown on a numerical example of the choice of optimum parameters of the technical, technological systems and materials. On the basis of mathematical methods of solution of vector problems we developed the software in the MATLAB system. The numerical example includes: input data (requirement specification) for modeling;transformation of mathematical models with uncertainty to the model under certainty;acceptance of an optimal solution with equivalent criteria (the solution of numerical model);acceptance of an optimal solution with the given priority of criterion.展开更多
we demonstrate the adjustability of optimal input power(OIP) of the radio over fiber(RoF) link by proper link gain control in the central unit(CU) and remote antenna unit(RAU).The experiment results show that the read...we demonstrate the adjustability of optimal input power(OIP) of the radio over fiber(RoF) link by proper link gain control in the central unit(CU) and remote antenna unit(RAU).The experiment results show that the reading and writing distance(RWD)of the radio frequency identification(RFID)service and the throughput of the WiFi service have a max increase of 3cm and 6.975Mbit/s respectively when the OIP value equals to output power of commercial products,compared with OIP value with 5-dBm right/left shift to the output power.展开更多
This paper is concerned with anε-quasi-weakly solution for a semi-infinite vector optimization problem with data uncertainty in constraints by using the Clarke subdifferential.Both necessary and sufficient optimality...This paper is concerned with anε-quasi-weakly solution for a semi-infinite vector optimization problem with data uncertainty in constraints by using the Clarke subdifferential.Both necessary and sufficient optimality conditions for a semi-infinite vector optimization problem with data uncertainty in constraints are established.We also investigate a Mond–Weir-type dual problem with respect to the primal problem.An application to a fractional semi-infinite vector optimization problem with data uncertainty in constraints is provided.Some examples are given to illustrate our results.展开更多
In this paper, a new approach for generating all or partly efficient solutions called the Combined Approach is developed. The property of efficient solutions generated by the combined approach and its relationships wi...In this paper, a new approach for generating all or partly efficient solutions called the Combined Approach is developed. The property of efficient solutions generated by the combined approach and its relationships with other four approaches: weighting approach, sequential approach, ε-constraint approach and hybrid approach, are discussed. Based on this combined approach, a decision-making support method called the Combined Decision-Making Method (CDMM) for multiobjective problems is developed, which is an interactive process with the decision maker. Only the aspiration levels, which reflect the decision maker's satisfying degrees for corresponding objectives, are needed to be supplied by the decision maker step by step as he will. This interactive way for objectives can easily be accepted. Finally, the application of the proposed decision making method in the resource allocation problem is discussed, and an example for the production decision analysis of the solar energy cells given.展开更多
Model errors offset by constant and time-variant optimal forcing vector approaches (termed COF and OFV, respectively) are analyzed within the framework of E1 Nifio simulations. Applying the COF and OFV approaches to...Model errors offset by constant and time-variant optimal forcing vector approaches (termed COF and OFV, respectively) are analyzed within the framework of E1 Nifio simulations. Applying the COF and OFV approaches to the well-known Zebiak-Cane model, we re-simulate the 1997 and 2004 E1 Nifio events, both of which were poorly degraded by a certain amount of model error when the initial anomalies were generated by coupling the observed wind forcing to an ocean com- ponent. It is found that the Zebiak-Cane model with the COF approach roughly reproduced the 1997 E1 Nifio, but the 2004 E1 Nifio simulated by this approach defied an ENSO classification, i.e., it was hardly distinguishable as CP-E1 Nifio or EP-E1 Nifio. In hoth E1 Nifio simulations, substituting the COF with the OFV improved the fit between the simulations and obser- vations because the OFV better manages the time-variant errors in the model. Furthermore, the OFV approach effectively corrected the modeled E1 Nifio events even when the observational data (and hence the computational time) were reduced. Such a cost-effective offset of model errors suggests a role for the OFV approach in complicated CGCMs.展开更多
The understanding of density waves is a vital component of our insight into electronic quantum matters. Here, we propose an additional mosaic to the existing mechanisms such as Fermi-surface nesting, electron–phonon ...The understanding of density waves is a vital component of our insight into electronic quantum matters. Here, we propose an additional mosaic to the existing mechanisms such as Fermi-surface nesting, electron–phonon coupling, and exciton condensation. In particular, we find that certain two-dimensional(2D) spin density-wave systems are equivalent to three-dimensional(3D) Dirac nodal-line systems in the presence of a magnetic field, whose electronic structure takes the form of Dirac-fermion Landau levels and allows a straightforward analysis of its optimal filling. The subsequent minimumenergy wave vector varies over a continuous range and shows no direct connection to the original Fermi surfaces in 2D.Also, we carry out numerical calculations where the results on model examples support our theory. Our study points out that we have yet to attain a complete understanding of the emergent density wave formalism.展开更多
Based on the actual experience of cooperation in the supply chain, the Nash solution of two enterprises cooperative games is given. Not only is the solution unique, but it is also stable, and neither side has the capa...Based on the actual experience of cooperation in the supply chain, the Nash solution of two enterprises cooperative games is given. Not only is the solution unique, but it is also stable, and neither side has the capability to deviate the allocation of interests from the equilibrium point. If some firm tries to withdraw from cooperation or threaten to use other particular strategy, the negotiations are likely to achieve the distribution by the threat game; The calculating method of the choice of the optimal bargaining base point and the corresponding optimal pay-off vector are given.展开更多
In order to reduce redundant empty bin capacity arrangement mechanism for mean shift tracking objects in the probability representation, we present a new color feature In the proposed mechanism, the important optimal ...In order to reduce redundant empty bin capacity arrangement mechanism for mean shift tracking objects in the probability representation, we present a new color feature In the proposed mechanism, the important optimal color, or we call it optimal color vector, is clustered by closing Euclidean distance which happens inside the original RGB color 3-D spatial domain. After obtaining clustering colors from the reference image RGB spatial domain, novel clustering groups substitute for original color data. So the new color substitution distribution is as similar as the original one. And then target region in the candidate frame is mapped by the constructed optimal clustering colors and the cluster Indices. In the final, mean shift algorithm gives a performance in the new optimal color distribution. Comparison under the same circumstance between the proposed algorithm and conventional mean shift algorithm shows that the former has a certain advantage in computation cost.展开更多
基金co-supported by the National Natural Science Foundation of China(No.52477063)the National Key Research and Development Program of China(No.2023YFF0719100)。
文摘With the development of More Electric Aircraft(MEA),the Permanent Magnet Synchronous Motor(PMSM)is widely used in the MEA field.The PMSM control system of MEA needs to consider the system reliability,and the inverter switching frequency of the inverter is one of the impacting factors.At the same time,the control accuracy of the system also needs to be considered,and the torque ripple and flux ripple are usually considered to be its important indexes.This paper proposes a three-stage series Model Predictive Torque and Flux Control system(three-stage series MPTFC)based on fast optimal voltage vector selection to reduce switching frequency and suppress torque ripple and flux ripple.Firstly,the analytical model of the PMSM is established and the multi-stage series control method is used to reduce the switching frequency.Secondly,selectable voltage vectors are extended from 8 to 26 and a fast selection method for optimal voltage vector sectors is designed based on the hysteresis comparator,which can suppress the torque ripple and flux ripple to improve the control accuracy.Thirdly,a three-stage series control is obtained by expanding the two-stage series control using the P-Q torque decomposition theory.Finally,a model predictive torque and flux control experimental platform is built,and the feasibility and effectiveness of this method are verified through comparison experiments.
基金supported by the National Natural Science Foundation of China(Nos.32171627 and 62105252)the Science and Technology Research Program of Chongqing Municipal Education Commission(No.KJZD-M202200602)the Hangzhou Science and Technology Development Project(No.202204T04).
文摘The total nitrogen(TN)is a major factor contributing to eutrophication and is a crucial parameter in assessing surface water quality.Accurate and rapid methods are crucial for determining the TN content in water.Herein,a fast,highly sensitive,and pollution-free approach is proposed,which combines ultraviolet(UV)absorption spectroscopy with Bayesian optimized least squares support vector machine(LSSVM)for detecting TN content in water.Water samples collected from sampling points near the Yangtze River basin in Chongqing of China were analyzed using national standard methods to measure TN content as reference values.The prediction of TN content in water was achieved by integrating the UV absorption spectra of water samples with LSSVM.To make the model quickly and accurately select the optimal parameters to improve the accuracy of the prediction model,the Bayesian optimization(BO)algorithm was used to optimize the parameters of the LSSVM.Results show that the prediction model performs well in predicting TN concentration,with a high coefficient of prediction determination(R^(2)=0.9413)and a low root mean square error of prediction(RMSE=0.0779 mg/L).Comparative analysis with previous studies indicates that the model used in this paper achieves lower prediction errors and superior predictive performance.
基金Foundation item: Supported by the Natural Science Foundation of China(10871216) Supported by the Natural Science Foundation Project of CQ CSTC(2008BB0346, 2007BB0441) Supported by the Excellent Young Teachers Program of Chongqing Jiaotong University(EYT08-016) Acknowledgement The author would like to thank the anonymous referee for the valuable remarks that helped considerably to correct and to improve the presentation.
文摘In locally convex Hausdorff topological vector spaces,ε-strongly efficient solutions for vector optimization with set-valued maps are discussed.Firstly,ε-strongly efficient point of set is introduced.Secondly,under the nearly cone-subconvexlike set-valued maps,the theorem of scalarization for vector optimization is obtained.Finally,optimality conditions of ε-strongly efficient solutions for vector optimization with generalized inequality constraints and equality constraints are obtained.
文摘The robust parameter design method is a traditional approach to robust experimental design that seeks to obtain the optimal combination of factors/levels. To overcome some of the defects of the inflatable wing parameter design method, this paper proposes an optimization design scheme based on orthogonal testing and support vector machines (SVMs). Orthogonal testing design is used to estimate the appropriate initial value and variation domain of each variable to decrease the number of iterations and improve the identification accuracy and efficiency. Orthogonal tests consisting of three factors and three levels are designed to analyze the parameters of pressure, uniform applied load and the number of chambers that affect the bending response of inflatable wings. An SVM intelligent model is established and limited orthogonal test swatches are studied. Thus, the precise relationships between each parameter and product quality features, as well the signal-to-noise ratio (SNR), can be obtained. This can guide general technological design optimization.
文摘The definitions of cone-subconvexlike set-valued maps and generalized cone-subconvexlike set-valued maps in topological vector spaces are defined by using the relative interiors of ordering cone. The relationships between the two classes of set-valued maps are investigated, and some properties of them are shown. A Gordan type alternative theorem under the assumption of generalized cone-subconvexlikeness of set-valued maps is proved by applying convex separation theorems involving the relative interiors in infinite dimensional spaces. Finally a necessary optimality condition theorem is shown for a general kind of set-valued vector optimization in a sense of weak E-minimizer.
文摘The aim of this paper is to study the relationship among Minty vector variational-like inequality problem, Stampacchia vector variational-like inequality problem and vector optimization problem involving (G, α)-invex functions. Furthermore, we establish equivalence among the solutions of weak formulations of Minty vector variational-like inequality problem, Stampacchia vector variational-like inequality problem and weak efficient solution of vector optimization problem under the assumption of (G, α)-invex functions. Examples are provided to elucidate our results.
基金Foundation item: Supported by the National Natural Science Foundation of China(60574075) University, engaged in optimization theory and application.
文摘In this note,new classes of generalized type-I functions are introduced for functions between Banach spaces.These generalized type-I functions are then utilized to establish sufficient optimality conditions and duality results for a vector optimization problem with functions defined on a Banach space.
基金funded by the Science and Technology Research Project of Education Department of Liaoning(L2015387)Natural Science Foundation of Liaoning(201602542)the National Natural Science Foundation of China(51407119)
文摘According to the actual requirements,profile and rolling energy consumption are selected as objective functions of rolling schedule optimization for tandem cold rolling.Because of mechanical wear,roll diameter has some uncertainty during the rolling process,ignoring which will cause poor robustness of rolling schedule.In order to solve this problem,a robust multi-objective optimization model of rolling schedule for tandem cold rolling was established.A differential evolution algorithm based on the evolutionary direction was proposed.The algorithm calculated the horizontal angle of the vector,which was used to choose mutation vector.The chosen vector contained converging direction and it changed the random mutation operation in differential evolution algorithm.Efficiency of the proposed algorithm was verified by two benchmarks.Meanwhile,in order to ensure that delivery thicknesses have descending order like actual rolling schedule during evolution,a modified Latin Hypercube Sampling process was proposed.Finally,the proposed algorithm was applied to the model above.Results showed that profile was improved and rolling energy consumption was reduced compared with the actual rolling schedule.Meanwhile,robustness of solutions was ensured.
基金Supported by the National Natural Science Foundation of China(61333010,61134007and 21276078)“Shu Guang”project of Shanghai Municipal Education Commission,the Research Talents Startup Foundation of Jiangsu University(15JDG139)China Postdoctoral Science Foundation(2016M591783)
文摘Dynamic optimization problems(DOPs) described by differential equations are often encountered in chemical engineering. Deterministic techniques based on mathematic programming become invalid when the models are non-differentiable or explicit mathematical descriptions do not exist. Recently, evolutionary algorithms are gaining popularity for DOPs as they can be used as robust alternatives when the deterministic techniques are invalid. In this article, a technology named ranking-based mutation operator(RMO) is presented to enhance the previous differential evolution(DE) algorithms to solve DOPs using control vector parameterization. In the RMO, better individuals have higher probabilities to produce offspring, which is helpful for the performance enhancement of DE algorithms. Three DE-RMO algorithms are designed by incorporating the RMO. The three DE-RMO algorithms and their three original DE algorithms are applied to solve four constrained DOPs from the literature. Our simulation results indicate that DE-RMO algorithms exhibit better performance than previous non-ranking DE algorithms and other four evolutionary algorithms.
基金This Project supported by the Specialized Research Fund for the Doctoral Program of Higher Education of China (Grant No.20122304120011)the Fundamental Research Funds for the Central Universities of Ministry of Education of China (Grant No.HEUCFR1119)
文摘Owing to the multipath effect, the source localization in shallow water has been an area of active interest. However, most methods for source localization in shallow water are sensitive to the assumed model of the underwater environment and have poor robustness against the underwater channel uncertainty, which limit their further application in practical engineering. In this paper, a new method of source localization in shallow water, based on vector optimization concept, is described, which is highly robust against environmental factors affecting the localization, such as the channel depth, the bottom reflection coefficients, and so on. Through constructing the uncertainty set of the source vector errors and extracting the multi-path sound rays from the sea surface and bottom, the proposed method can accurately localize one or more sources in shallow water dominated by multipath propagation. It turns out that the natural formulation of our approach involves minimization of two quadratic functions subject to infinitely many nonconvex quadratic constraints. It shows that this problem (originally intractable) can be reformulated in a convex form as the so-called second-order cone program (SOCP) and solved efficiently by using the well-established interior point method, such as the sottware tool, SeDuMi. Computer simulations show better performance of the proposed method as compared with existing algorithms and establish a theoretical foundation for the practical engineering application.
基金supported by the National Natural Science Foundation of China(10871141)
文摘Let (E,ξ)=ind(En,ξn) be an inductive limit of a sequence (En,ξn)n∈N of locally convex spaces and let every step (En,ξn) be endowed with a partial order by a pointed convex (solid) cone Sn. In the framework of inductive limits of partially ordered locally convex spaces, the notions of lastingly efficient points, lastingly weakly efficient points and lastingly globally properly efficient points are introduced. For several ordering cones, the notion of non-conflict is introduced. Under the requirement that the sequence (Sn)n∈N of ordering cones is non-conflicting, an existence theorem on lastingly weakly efficient points is presented. From this, an existence theorem on lastingly globally properly efficient points is deduced.
基金supported by the Natural Science Foundation of Sichuan Education Department of China(No. 07ZA092)the Sichuan Province Leading Academic Discipline Project (No. SZD0406)
文摘In this paper, we introduce some new systems of generalized vector quasi-variational inclusion problems and system of generalized vector ideal (resp., proper, Pareto, weak) quasi-optimization problems in locally FC-uniform spaces without convexity structure. By using the KKM type theorem and Himmelberg type fixed point theorem proposed by the author, some new existence theorems of solutions for the systems of generalized vector quasi-variational inclusion problems are proved. As to its applications, we obtain some existence results of solutions for systems of generalized vector quasi-optimization problems.
文摘We presented Mathematical apparatus of the choice of optimum parameters of technical, technological systems and materials on the basis of vector optimization. We have considered the formulation and solution of three types of tasks presented below. First, the problem of selecting the optimal parameters of technical systems depending on the functional characteristics of the system. Secondly, the problem of selecting the optimal parameters of the process depending on the technological characteristics of the process. Third, the problem of choosing the optimal structure of the material depending on the functional characteristics of this material. The statement of all problems is made in the form of vector problems of mathematical (nonlinear) programming. The theory and the principle of optimality of the solution of vector tasks it is explained in work of https://rdcu.be/bhZ8i. The implementation of the methodology is shown on a numerical example of the choice of optimum parameters of the technical, technological systems and materials. On the basis of mathematical methods of solution of vector problems we developed the software in the MATLAB system. The numerical example includes: input data (requirement specification) for modeling;transformation of mathematical models with uncertainty to the model under certainty;acceptance of an optimal solution with equivalent criteria (the solution of numerical model);acceptance of an optimal solution with the given priority of criterion.
基金supported in part by the National Basic Research Program of China (2012CB315704) the National Natural Science Foundation of China(No.61275068) the Key Grant Project of Chinese Ministry of Education(No.313049)
文摘we demonstrate the adjustability of optimal input power(OIP) of the radio over fiber(RoF) link by proper link gain control in the central unit(CU) and remote antenna unit(RAU).The experiment results show that the reading and writing distance(RWD)of the radio frequency identification(RFID)service and the throughput of the WiFi service have a max increase of 3cm and 6.975Mbit/s respectively when the OIP value equals to output power of commercial products,compared with OIP value with 5-dBm right/left shift to the output power.
文摘This paper is concerned with anε-quasi-weakly solution for a semi-infinite vector optimization problem with data uncertainty in constraints by using the Clarke subdifferential.Both necessary and sufficient optimality conditions for a semi-infinite vector optimization problem with data uncertainty in constraints are established.We also investigate a Mond–Weir-type dual problem with respect to the primal problem.An application to a fractional semi-infinite vector optimization problem with data uncertainty in constraints is provided.Some examples are given to illustrate our results.
文摘In this paper, a new approach for generating all or partly efficient solutions called the Combined Approach is developed. The property of efficient solutions generated by the combined approach and its relationships with other four approaches: weighting approach, sequential approach, ε-constraint approach and hybrid approach, are discussed. Based on this combined approach, a decision-making support method called the Combined Decision-Making Method (CDMM) for multiobjective problems is developed, which is an interactive process with the decision maker. Only the aspiration levels, which reflect the decision maker's satisfying degrees for corresponding objectives, are needed to be supplied by the decision maker step by step as he will. This interactive way for objectives can easily be accepted. Finally, the application of the proposed decision making method in the resource allocation problem is discussed, and an example for the production decision analysis of the solar energy cells given.
基金sponsored by the National Basic Research Program of China(Grant No.2012CB955202)the National Public Benefit(Meteorology)Research Foundation of China(Grant No.GYHY201306018)the National Natural Science Foundation of China(Grant Nos.41176013 and41230420)
文摘Model errors offset by constant and time-variant optimal forcing vector approaches (termed COF and OFV, respectively) are analyzed within the framework of E1 Nifio simulations. Applying the COF and OFV approaches to the well-known Zebiak-Cane model, we re-simulate the 1997 and 2004 E1 Nifio events, both of which were poorly degraded by a certain amount of model error when the initial anomalies were generated by coupling the observed wind forcing to an ocean com- ponent. It is found that the Zebiak-Cane model with the COF approach roughly reproduced the 1997 E1 Nifio, but the 2004 E1 Nifio simulated by this approach defied an ENSO classification, i.e., it was hardly distinguishable as CP-E1 Nifio or EP-E1 Nifio. In hoth E1 Nifio simulations, substituting the COF with the OFV improved the fit between the simulations and obser- vations because the OFV better manages the time-variant errors in the model. Furthermore, the OFV approach effectively corrected the modeled E1 Nifio events even when the observational data (and hence the computational time) were reduced. Such a cost-effective offset of model errors suggests a role for the OFV approach in complicated CGCMs.
基金the National Key Research and Development Program of China (Grant No. 2022YFA1403700)the National Natural Science Foundation of China (Grant Nos. 12174008 and 92270102)。
文摘The understanding of density waves is a vital component of our insight into electronic quantum matters. Here, we propose an additional mosaic to the existing mechanisms such as Fermi-surface nesting, electron–phonon coupling, and exciton condensation. In particular, we find that certain two-dimensional(2D) spin density-wave systems are equivalent to three-dimensional(3D) Dirac nodal-line systems in the presence of a magnetic field, whose electronic structure takes the form of Dirac-fermion Landau levels and allows a straightforward analysis of its optimal filling. The subsequent minimumenergy wave vector varies over a continuous range and shows no direct connection to the original Fermi surfaces in 2D.Also, we carry out numerical calculations where the results on model examples support our theory. Our study points out that we have yet to attain a complete understanding of the emergent density wave formalism.
文摘Based on the actual experience of cooperation in the supply chain, the Nash solution of two enterprises cooperative games is given. Not only is the solution unique, but it is also stable, and neither side has the capability to deviate the allocation of interests from the equilibrium point. If some firm tries to withdraw from cooperation or threaten to use other particular strategy, the negotiations are likely to achieve the distribution by the threat game; The calculating method of the choice of the optimal bargaining base point and the corresponding optimal pay-off vector are given.
基金The MKE(the Ministry of Knowledge Economy),Korea,under the ITRC(Information Technology Research Center)support program supervised by the NIPA(National IT Industry Promotion Agency) (NIPA-2012-C1090-1121-0010)The Brain Korea21Project in 2012
文摘In order to reduce redundant empty bin capacity arrangement mechanism for mean shift tracking objects in the probability representation, we present a new color feature In the proposed mechanism, the important optimal color, or we call it optimal color vector, is clustered by closing Euclidean distance which happens inside the original RGB color 3-D spatial domain. After obtaining clustering colors from the reference image RGB spatial domain, novel clustering groups substitute for original color data. So the new color substitution distribution is as similar as the original one. And then target region in the candidate frame is mapped by the constructed optimal clustering colors and the cluster Indices. In the final, mean shift algorithm gives a performance in the new optimal color distribution. Comparison under the same circumstance between the proposed algorithm and conventional mean shift algorithm shows that the former has a certain advantage in computation cost.