Thrust-vectoring capability has become a critical feature for propulsion systems as space missions move from static to dynamic.Thrust-vectoring is a well-developed area of rocket engine science.For electric propulsion...Thrust-vectoring capability has become a critical feature for propulsion systems as space missions move from static to dynamic.Thrust-vectoring is a well-developed area of rocket engine science.For electric propulsion,however,it is an evolving field that has taken a new leap forward in recent years.A review and analysis of thrust-vectoring schemes for electric propulsion systems have been conducted.The scope of this review includes thrust-vectoring schemes that can be implemented for electrostatic,electromagnetic,and beam-driven thrusters.A classification of electric propulsion schemes that provide thrust-vectoring capability is developed.More attention is given to schemes implemented in laboratory prototypes and flight models.The final part is devoted to a discussion on the suitability of different electric propulsion systems with thrust-vectoring capability for modern space mission operations.The thrust-vectoring capability of electric propulsion is necessary for inner and outer space satellites,which are at a disadvantage with conventional unidirectional propulsion systems due to their limited maneuverability.展开更多
The high-efficiency Shock Vectoring Control Serpentine Nozzle(SVCSN)takes into account both thrust vectoring and infrared stealth,and significantly improves the comprehensive performance of the aero-engines through an...The high-efficiency Shock Vectoring Control Serpentine Nozzle(SVCSN)takes into account both thrust vectoring and infrared stealth,and significantly improves the comprehensive performance of the aero-engines through an additional auxiliary duct.In this paper,the schlieren photographs at the exit of the high-efficiency SVCSN and the wall static pressure distributions were obtained by experiments,and the numerical results were used to enrich the thrust vectoring characteristics.The effects of the auxiliary injection were analyzed first to reveal the advantages of the high-efficiency SVCSN compared to the conventional SVCSN.Then,the aerodynamic parameters and the structural parameters of the high-efficiency SVCSN were investigated,including the Nozzle Pressure Ratio(NPR),the Secondary flow Pressure Ratio(SPR),the secondary flow relative area and the secondary flow injection angle.Finally,the coupling performance of the high-efficiency SVCSN is studied by using the approximate modeling technology.Results show that the auxiliary injection increases the range between the two shock legs of the “k”shock wave induced by the secondary flow,then causes the separation zone and high-pressure boss of the down wall to expand upstream,and finally results in a prominent increase in the thrust vectoring performance.The thrust vectoring angle and Vectoring Efficiency(VE)of the high-efficiency SVCSN are about 61.6%and 75.7%,respectively,higher than those of the conventional SVCSN at NPR=6.The effects of the NPR and the SPR on the thrust vectoring performance of the high-efficiency SVCSN are coupled with each other.A larger NPR matched with a smaller SPR shows better thrust vectoring performance.The maximum fluctuations in thrust vectoring angle and VE caused by the NPR and SPR are about 22%and 64%.The VE decreases monotonously with the increase of the secondary flow relative area.Smaller secondary flow injection angle shows better thrust vector performance,and the thrust vectoring angle and VE of the secondary flow injection angle of 90are about 20%higher than those of the secondary flow injection angle of 110at NPR=6.Therefore,the secondary flow relative area of 0.06 and the secondary flow injection angle of 90are recommended.展开更多
The Bypass Dual Throat Nozzle(BDTN)is a novel fluidic Thrust Vectoring(TV)nozzle,it switches to TV state by opening the valve in the bypass.To greatly manipulate the BDTN,the dynamic characteristics in the TV starting...The Bypass Dual Throat Nozzle(BDTN)is a novel fluidic Thrust Vectoring(TV)nozzle,it switches to TV state by opening the valve in the bypass.To greatly manipulate the BDTN,the dynamic characteristics in the TV starting process should be analyzed.This paper conducts numerical simulations to grasp the variation processes of performances and the flow field evolution of BDTN and Dual Throat Nozzle(DTN).The dynamic responses of TV starting in typical DTN models are investigated at first.Then,the TV starting processes of BDTN in different Nozzle Pressure Ratio(NPR)conditions are simulated,and the valve opening durations(T)are also considered.Before the expected TV direction is achieved in the DTN,the jet is deflected to the opposite direction at the beginning of the dynamic process,which is called the reverse TV phenomenon.However,this phenomenon disappears in the BDTN.The larger injection width of DTN intensifies unsteady oscillations,and the reverse TV phenomenon is strengthened.In the BDTN,T determines the delay degree of performance variations compared to the static results,which is called hysteresis effect.At NPR=10,the hysteresis affects the final stable performance of BDTN.This study analyses the dynamic characteristics in DTN and BDTN,laying a foundation for further design of nozzles and control strategies.展开更多
This paper presents the flight dynamical behavior of the thrust vectoring aircraft with extended bifurcation and continuation methods. In contrast to the standard bifurcation and continuation methods, the extended met...This paper presents the flight dynamical behavior of the thrust vectoring aircraft with extended bifurcation and continuation methods. In contrast to the standard bifurcation and continuation methods, the extended methods are capable of calculating the continuation curves of the equilibrium points for the particular type of trimming flight. Therefore, these methods can not only give the performance measures of aircraft, but also determine the stability of trimming points. In this paper, the methods are used to verify the effectiveness of the thrust vectoring control law, to define the flight envelope boundary, to analyze the stability and controllability of trimming flight, and to predict the departures of the instable flight. The result shows that the extended methods provide more flight dynamic information and are useful in preliminary design of the thrust vectoring aircraft.展开更多
A primary air jet vectoring control system with a novel synthetic jet actuator (SJA) is presented and simulated numerically. The results show that, in comparison with an existing traditional synthetic jet actuator, ...A primary air jet vectoring control system with a novel synthetic jet actuator (SJA) is presented and simulated numerically. The results show that, in comparison with an existing traditional synthetic jet actuator, which is able to perform the duty of either "push" or "pull", one novel synthetic jet actuator can fulfill both "push" and "pull" functions to vector the primary jet by shifting a slide block inside it. Therefore, because the new actuator possesses greater efficiency, it has potentiality to replace the existing one in various appli- cations, such as thrust vectoring and the reduction of thermal signature. Moreover, as the novel actuator can fulfill those functions that the existing one can not, it may well be expected to popularize it into more flow control systems.展开更多
A primary jet vectoring using synthetic jet actuators with different exit configurations was investigated, and the main physical factors influencing jet vectoring were analyzed and summarized. The physical factors of ...A primary jet vectoring using synthetic jet actuators with different exit configurations was investigated, and the main physical factors influencing jet vectoring were analyzed and summarized. The physical factors of the pressure difference, the location and area of the lower pressure region, the component of the synthetic jet momentum and the entrainment ratio of the synthetic jet flow to primary jet flow directly control the vectoring force and the vectoring angle. Three characteristic parameters of the synthetic jet contribute to the pressure difference and the area of the lower pressure region Both the extension step and slope angle of the actuator exit have functions of regulating the location of the lower pressure region, the area of the lower pressure region, and the entrainment ratio of the synthetic jet flow to primary jet flow. The slope angle of the actuator exit has additional functions of regulating the component of the synthetic jet momentum. Based upon analyzing the physical factors of jet vectoring control with synthetic jets, the source variables of the physical factors were established. A preparatory control model of jet vectoring using synthetic jet actuator was presented, and it has the benefit of explaining the efficiency of jet vectoring using synthetic jet actuator with source variables at different values, and it indicates the optimal actuator is taking full advantage of the regulating function.展开更多
The principle of improving the torque amplification factor of E-TVDs with six elements is illustrated in this paper.A velocity diagram is used to study speed and torque relationships.The results reveal that the torque...The principle of improving the torque amplification factor of E-TVDs with six elements is illustrated in this paper.A velocity diagram is used to study speed and torque relationships.The results reveal that the torque amplification factor is the linear combination of the ratio of the differentials of the four elements and the ratio of planetary gear units,and its maximum value is easily more than 10.The E-TVDs with six elements are classified into three types,and there are six different configurations for each type.The torque amplification factor and the speed of interconnection between two planetary gear units are employed to evaluate the different characteristics of each E-TVD with six elements.The feasible configurations of a differential with four elements are also presented by the analysis of velocity level and planarity.This paper helps to further the understanding of the complex interconnection of the planetary gear units in E-TVDs with six elements and the differences of their characteristics.展开更多
To change flight direction, flying animals modulate aerodynamic force either relative to their bodies to generate torque about the center of mass, or relative to the flight path to produce centripetal force that curve...To change flight direction, flying animals modulate aerodynamic force either relative to their bodies to generate torque about the center of mass, or relative to the flight path to produce centripetal force that curves the trajectory. In employing the latter, the direction of aerodynamic force remains fixed in the body flame and rotations of the body redirect the force. While both aforementioned techniques are essential for flight, it is critical to investigate how an animal balances the two to achieve aerial locomotion. Here, we measured wing and body kinematics of cicada (Tibicen linnei) in flee flight, including flight periods of both little and substantial body reorientations. It is found that cicadas employ a common force vectoring technique to execute all these flights. We show that the direction of the half-stroke averaged aerodynamic force relative to the body is independent of the body orientation, varying in a range of merely 20 deg. Despite directional limitation of the aerodynamic force, pitch and roll torque are generated by altering wing angle of attack and its mean position relative to the center of mass. This results in body rotations which redirect the wing force in the global flame and consequently change the flight traiectorv.展开更多
The excellent vectoring characteristic of Dual Synthetic Jet(DSJ)provides a new control strategy for the active flow control,such as thrust vectoring control,large area cooling,separated flow control and so on.For inc...The excellent vectoring characteristic of Dual Synthetic Jet(DSJ)provides a new control strategy for the active flow control,such as thrust vectoring control,large area cooling,separated flow control and so on.For incompressible flow,the influence relation of source variables,such as structure parameters of actuators,driving parameters and material attributes of piezoelectric vibrating diaphragm,on the vectoring DSJ and a theoretical model are established based on theoretical and regression analysis,which are all verified by numerical simulations.The two synthetic jets can be deemed as a main flow with a higher jet velocity and a disturbing flow with a lower jet velocity.The results indicate that the influence factors contain the low-pressure area formed at the exit of the disturbing flow,which could promote the vectoring deflection,and the impact effect of the disturbing flow and the suppressive effect of the main flow with the effect of restraining the vectoring deflection.The vectoring angle is a complex parameter coupled by all source variables.The detailed theoretical model,whose error is controlled within 3.6 degrees,can be used to quantitatively assess the vectoring feature of DSJ and thus to provide a guidance for designing the control law applied in the active flow control.展开更多
Females of the ectoparasitoid Habrobracon hebetor attack and envenomate numerous host individuals during oviposition. The vectoring of the entomopathogenic fungus Beauveria bassiana during the adhesion stage by ectopa...Females of the ectoparasitoid Habrobracon hebetor attack and envenomate numerous host individuals during oviposition. The vectoring of the entomopathogenic fungus Beauveria bassiana during the adhesion stage by ectoparasitoid females among the wax moth larvae Galleria mellonella was explored under laboratory conditions. Vectoring occurred both from infected parasitoids to wax moth larvae and from infected to healthy wax moth larvae by parasitoids. The efficacy of vectoring in both cases was dose dependent. Parasitoid females were unable to recognize infected larvae in a labyrinth test. In addition, the presence of H. hebetor females significantly (1.5-13 fold) increased the mycoses level in clusters of G. mellonella, with 40% of the larvae infected with ftmgal conidia. Envenomation by H. hebetor increased conidia germination on the cuticles of the wax moth larvae by 4.4 fold. An enhanced germination rate (2 fold) was registered in the n- hexane epicuticular extract of envenomated larvae compared to that of healthy larvae. Both envenomation and mycoses enhanced the phenoloxidase (PO) activity in the integument of G. mellonella and, in contrast, decreased the encapsulation rate in hemolymphs. We hypothesize that changes in the integument property and inhibition of cellular immunity provide the highest infection efficacy of entomopathogenic fungi with H. hebetor.展开更多
Although electric vehicle fully exhibits its comparative merits of energy conservation and environmental friendliness, further improvement of its traction energy efficiency lacks comprehensive investigations in the pa...Although electric vehicle fully exhibits its comparative merits of energy conservation and environmental friendliness, further improvement of its traction energy efficiency lacks comprehensive investigations in the past. In this paper, the effect of the torque vectoring on traction energy conservation during cornering for a rear-wheel-independent-drive electric vehicle is investigated.Firstly, turning resistance coefficient and energy conservation mechanism of torque vectoring are derived from the single track dynamic model. Next, an optimal torque vectoring control strategy based on genetic algorithm is proposed, with the consideration of the influence of the operation-point change of the in-wheel motors, to find out the best torque vectoring ratio offline. Finally,various simulation tests are conducted to validate the energy conservation effect after Simulink modelling. The results verify that though the optimization of the operating region of the motors is the main part for tractive energy conservation, the contribution of torque vectoring itself can reach up to 1.7% in some typical cases.展开更多
Accurately estimating the State of Health(SOH)and Remaining Useful Life(RUL)of lithium-ion batteries(LIBs)is crucial for the continuous and stable operation of battery management systems.However,due to the complex int...Accurately estimating the State of Health(SOH)and Remaining Useful Life(RUL)of lithium-ion batteries(LIBs)is crucial for the continuous and stable operation of battery management systems.However,due to the complex internal chemical systems of LIBs and the nonlinear degradation of their performance,direct measurement of SOH and RUL is challenging.To address these issues,the Twin Support Vector Machine(TWSVM)method is proposed to predict SOH and RUL.Initially,the constant current charging time of the lithium battery is extracted as a health indicator(HI),decomposed using Variational Modal Decomposition(VMD),and feature correlations are computed using Importance of Random Forest Features(RF)to maximize the extraction of critical factors influencing battery performance degradation.Furthermore,to enhance the global search capability of the Convolution Optimization Algorithm(COA),improvements are made using Good Point Set theory and the Differential Evolution method.The Improved Convolution Optimization Algorithm(ICOA)is employed to optimize TWSVM parameters for constructing SOH and RUL prediction models.Finally,the proposed models are validated using NASA and CALCE lithium-ion battery datasets.Experimental results demonstrate that the proposed models achieve an RMSE not exceeding 0.007 and an MAPE not exceeding 0.0082 for SOH and RUL prediction,with a relative error in RUL prediction within the range of[-1.8%,2%].Compared to other models,the proposed model not only exhibits superior fitting capability but also demonstrates robust performance.展开更多
In-wheel motor-drive electric vehicles have the advantage of independently controllable wheel torque and the disadvantages of unsprung mass rise and power restriction.To address the disadvantages,a centralized layout ...In-wheel motor-drive electric vehicles have the advantage of independently controllable wheel torque and the disadvantages of unsprung mass rise and power restriction.To address the disadvantages,a centralized layout electric torque vectoring drive-axle system(E-TVDS)with dual motors is proposed,which can realize arbitrary distribution of driving torque between the left and right wheels.First,the speed and torque distribution principle of E-TVDS based on velocity diagram are analyzed,and a virtual prototype of the whole vehicle with basic gear ratio relation model of the E-TVDS is built for simulation to verify the theoretical results and the basic effect of E-TVDS on the steering performance of the vehicle.Second,the charac-teristics of 36 types of the novel E-TVDS topology structure are compared and analyzed,and the optimal structure scheme is selected.Third,the accurate multiple degrees of freedom dynamic model for the optimal structure is established by using the bond graph method,and its dynamic response characteristics are analyzed.The results show that the vehicle equipped with the proposed E-TVDS can distribute the driving torque with the almost identical amount but opposite sign between the left and right wheels in any direction,and varying amount according to different chassis dynamics control requirements,and the torque response performance is great with little delay and overshoot.The function and dynamic response of the proposed E-TVDS show that it has potential application value for various performance improvements of electric vehicles.展开更多
Glucose molecules are of great significance being one of the most important molecules in metabolic chain.However,due to the small Raman scattering cross-section and weak/non-adsorption on bare metals,accurately obtain...Glucose molecules are of great significance being one of the most important molecules in metabolic chain.However,due to the small Raman scattering cross-section and weak/non-adsorption on bare metals,accurately obtaining their"fingerprint information"remains a huge obstacle.Herein,we developed a tip-enhanced Raman scattering(TERS)technique to address this challenge.Adopting an optical fiber radial vector mode internally illuminates the plasmonic fiber tip to effectively suppress the background noise while generating a strong electric-field enhanced tip hotspot.Furthermore,the tip hotspot approaching the glucose molecules was manipulated via the shear-force feedback to provide more freedom for selecting substrates.Consequently,our TERS technique achieves the visualization of all Raman modes of glucose molecules within spectral window of 400-3200 cm^(-1),which is not achievable through the far-field/surface-enhanced Raman,or the existing TERS techniques.Our TERS technique offers a powerful tool for accurately identifying Raman scattering of molecules,paving the way for biomolecular analysis.展开更多
基金performed at large-scale research facility"Beam-M"of Bauman Moscow State Technical University following the government task by the Ministry of Science and Higher Education of the Russian Federation(No.FSFN-2024-0007).
文摘Thrust-vectoring capability has become a critical feature for propulsion systems as space missions move from static to dynamic.Thrust-vectoring is a well-developed area of rocket engine science.For electric propulsion,however,it is an evolving field that has taken a new leap forward in recent years.A review and analysis of thrust-vectoring schemes for electric propulsion systems have been conducted.The scope of this review includes thrust-vectoring schemes that can be implemented for electrostatic,electromagnetic,and beam-driven thrusters.A classification of electric propulsion schemes that provide thrust-vectoring capability is developed.More attention is given to schemes implemented in laboratory prototypes and flight models.The final part is devoted to a discussion on the suitability of different electric propulsion systems with thrust-vectoring capability for modern space mission operations.The thrust-vectoring capability of electric propulsion is necessary for inner and outer space satellites,which are at a disadvantage with conventional unidirectional propulsion systems due to their limited maneuverability.
基金supported by the Science Center for Gas Turbine Project,China(Nos.P2022-B-Ⅱ-010-001 and P2022-B-I-002-001)the National Natural Science Foundation of China(Nos.52376032 and 52076180)+2 种基金the Funds for Distinguished Young Scholars of Shaanxi Province,China(No.2021JC-10)the National Science and Technology Major Project,China(No.J2019-Ⅱ-0015-0036)the Fundamental Research Funds for the Central Universities,China(No.501XTCX2023146001).
文摘The high-efficiency Shock Vectoring Control Serpentine Nozzle(SVCSN)takes into account both thrust vectoring and infrared stealth,and significantly improves the comprehensive performance of the aero-engines through an additional auxiliary duct.In this paper,the schlieren photographs at the exit of the high-efficiency SVCSN and the wall static pressure distributions were obtained by experiments,and the numerical results were used to enrich the thrust vectoring characteristics.The effects of the auxiliary injection were analyzed first to reveal the advantages of the high-efficiency SVCSN compared to the conventional SVCSN.Then,the aerodynamic parameters and the structural parameters of the high-efficiency SVCSN were investigated,including the Nozzle Pressure Ratio(NPR),the Secondary flow Pressure Ratio(SPR),the secondary flow relative area and the secondary flow injection angle.Finally,the coupling performance of the high-efficiency SVCSN is studied by using the approximate modeling technology.Results show that the auxiliary injection increases the range between the two shock legs of the “k”shock wave induced by the secondary flow,then causes the separation zone and high-pressure boss of the down wall to expand upstream,and finally results in a prominent increase in the thrust vectoring performance.The thrust vectoring angle and Vectoring Efficiency(VE)of the high-efficiency SVCSN are about 61.6%and 75.7%,respectively,higher than those of the conventional SVCSN at NPR=6.The effects of the NPR and the SPR on the thrust vectoring performance of the high-efficiency SVCSN are coupled with each other.A larger NPR matched with a smaller SPR shows better thrust vectoring performance.The maximum fluctuations in thrust vectoring angle and VE caused by the NPR and SPR are about 22%and 64%.The VE decreases monotonously with the increase of the secondary flow relative area.Smaller secondary flow injection angle shows better thrust vector performance,and the thrust vectoring angle and VE of the secondary flow injection angle of 90are about 20%higher than those of the secondary flow injection angle of 110at NPR=6.Therefore,the secondary flow relative area of 0.06 and the secondary flow injection angle of 90are recommended.
基金the continued support of Key Laboratory of Inlet and Exhaust system Technology (Nanjing University of Aeronautics and Astronautics), ChinaMinistry of Education, National Science and Technology Major Project of China (Nos. 2017-V-0004-0054, 2019-II-0007-0027, Y2022II-0005-0008)+6 种基金Defense Industrial Technology Development Program of China (No. JCKY2019605D001)Advanced Jet Propulsion Creativity Center of AEAC of China (No. HKCX2020-02-011)China Postdoctoral Science Foundation (No. 2022M721598)Jiangsu Funding Program for Excellent Postdoctoral Talent of China (No. 2022ZB214)the Youth Fund Project of Natural Science Foundation of Jiangsu Province of China (No. BK20230891)the National Natural Science Foundation of China (No. 12332018)Science Center for Gas Turbine Project, China (P2022-B-I-006-001) and some other related foundations
文摘The Bypass Dual Throat Nozzle(BDTN)is a novel fluidic Thrust Vectoring(TV)nozzle,it switches to TV state by opening the valve in the bypass.To greatly manipulate the BDTN,the dynamic characteristics in the TV starting process should be analyzed.This paper conducts numerical simulations to grasp the variation processes of performances and the flow field evolution of BDTN and Dual Throat Nozzle(DTN).The dynamic responses of TV starting in typical DTN models are investigated at first.Then,the TV starting processes of BDTN in different Nozzle Pressure Ratio(NPR)conditions are simulated,and the valve opening durations(T)are also considered.Before the expected TV direction is achieved in the DTN,the jet is deflected to the opposite direction at the beginning of the dynamic process,which is called the reverse TV phenomenon.However,this phenomenon disappears in the BDTN.The larger injection width of DTN intensifies unsteady oscillations,and the reverse TV phenomenon is strengthened.In the BDTN,T determines the delay degree of performance variations compared to the static results,which is called hysteresis effect.At NPR=10,the hysteresis affects the final stable performance of BDTN.This study analyses the dynamic characteristics in DTN and BDTN,laying a foundation for further design of nozzles and control strategies.
文摘This paper presents the flight dynamical behavior of the thrust vectoring aircraft with extended bifurcation and continuation methods. In contrast to the standard bifurcation and continuation methods, the extended methods are capable of calculating the continuation curves of the equilibrium points for the particular type of trimming flight. Therefore, these methods can not only give the performance measures of aircraft, but also determine the stability of trimming points. In this paper, the methods are used to verify the effectiveness of the thrust vectoring control law, to define the flight envelope boundary, to analyze the stability and controllability of trimming flight, and to predict the departures of the instable flight. The result shows that the extended methods provide more flight dynamic information and are useful in preliminary design of the thrust vectoring aircraft.
基金National Natural Science Foundation of China (90205016, 50176055)
文摘A primary air jet vectoring control system with a novel synthetic jet actuator (SJA) is presented and simulated numerically. The results show that, in comparison with an existing traditional synthetic jet actuator, which is able to perform the duty of either "push" or "pull", one novel synthetic jet actuator can fulfill both "push" and "pull" functions to vector the primary jet by shifting a slide block inside it. Therefore, because the new actuator possesses greater efficiency, it has potentiality to replace the existing one in various appli- cations, such as thrust vectoring and the reduction of thermal signature. Moreover, as the novel actuator can fulfill those functions that the existing one can not, it may well be expected to popularize it into more flow control systems.
基金Project supported by the National Natural Science Foundation of China(Nos.90205016 and 50176055)
文摘A primary jet vectoring using synthetic jet actuators with different exit configurations was investigated, and the main physical factors influencing jet vectoring were analyzed and summarized. The physical factors of the pressure difference, the location and area of the lower pressure region, the component of the synthetic jet momentum and the entrainment ratio of the synthetic jet flow to primary jet flow directly control the vectoring force and the vectoring angle. Three characteristic parameters of the synthetic jet contribute to the pressure difference and the area of the lower pressure region Both the extension step and slope angle of the actuator exit have functions of regulating the location of the lower pressure region, the area of the lower pressure region, and the entrainment ratio of the synthetic jet flow to primary jet flow. The slope angle of the actuator exit has additional functions of regulating the component of the synthetic jet momentum. Based upon analyzing the physical factors of jet vectoring control with synthetic jets, the source variables of the physical factors were established. A preparatory control model of jet vectoring using synthetic jet actuator was presented, and it has the benefit of explaining the efficiency of jet vectoring using synthetic jet actuator with source variables at different values, and it indicates the optimal actuator is taking full advantage of the regulating function.
基金Natural Science Foundation of Jiangsu Province(BK20160223)。
文摘The principle of improving the torque amplification factor of E-TVDs with six elements is illustrated in this paper.A velocity diagram is used to study speed and torque relationships.The results reveal that the torque amplification factor is the linear combination of the ratio of the differentials of the four elements and the ratio of planetary gear units,and its maximum value is easily more than 10.The E-TVDs with six elements are classified into three types,and there are six different configurations for each type.The torque amplification factor and the speed of interconnection between two planetary gear units are employed to evaluate the different characteristics of each E-TVD with six elements.The feasible configurations of a differential with four elements are also presented by the analysis of velocity level and planarity.This paper helps to further the understanding of the complex interconnection of the planetary gear units in E-TVDs with six elements and the differences of their characteristics.
基金funded by the National Natural Science Foundation of China (1313217)Air Force Office of Scientific Research (FA9550-12-1-007) monitored by Dr. Douglas Smith
文摘To change flight direction, flying animals modulate aerodynamic force either relative to their bodies to generate torque about the center of mass, or relative to the flight path to produce centripetal force that curves the trajectory. In employing the latter, the direction of aerodynamic force remains fixed in the body flame and rotations of the body redirect the force. While both aforementioned techniques are essential for flight, it is critical to investigate how an animal balances the two to achieve aerial locomotion. Here, we measured wing and body kinematics of cicada (Tibicen linnei) in flee flight, including flight periods of both little and substantial body reorientations. It is found that cicadas employ a common force vectoring technique to execute all these flights. We show that the direction of the half-stroke averaged aerodynamic force relative to the body is independent of the body orientation, varying in a range of merely 20 deg. Despite directional limitation of the aerodynamic force, pitch and roll torque are generated by altering wing angle of attack and its mean position relative to the center of mass. This results in body rotations which redirect the wing force in the global flame and consequently change the flight traiectorv.
基金supported by the National Natural Science Foundation of China(Nos.11972369 and 11872374)。
文摘The excellent vectoring characteristic of Dual Synthetic Jet(DSJ)provides a new control strategy for the active flow control,such as thrust vectoring control,large area cooling,separated flow control and so on.For incompressible flow,the influence relation of source variables,such as structure parameters of actuators,driving parameters and material attributes of piezoelectric vibrating diaphragm,on the vectoring DSJ and a theoretical model are established based on theoretical and regression analysis,which are all verified by numerical simulations.The two synthetic jets can be deemed as a main flow with a higher jet velocity and a disturbing flow with a lower jet velocity.The results indicate that the influence factors contain the low-pressure area formed at the exit of the disturbing flow,which could promote the vectoring deflection,and the impact effect of the disturbing flow and the suppressive effect of the main flow with the effect of restraining the vectoring deflection.The vectoring angle is a complex parameter coupled by all source variables.The detailed theoretical model,whose error is controlled within 3.6 degrees,can be used to quantitatively assess the vectoring feature of DSJ and thus to provide a guidance for designing the control law applied in the active flow control.
文摘Females of the ectoparasitoid Habrobracon hebetor attack and envenomate numerous host individuals during oviposition. The vectoring of the entomopathogenic fungus Beauveria bassiana during the adhesion stage by ectoparasitoid females among the wax moth larvae Galleria mellonella was explored under laboratory conditions. Vectoring occurred both from infected parasitoids to wax moth larvae and from infected to healthy wax moth larvae by parasitoids. The efficacy of vectoring in both cases was dose dependent. Parasitoid females were unable to recognize infected larvae in a labyrinth test. In addition, the presence of H. hebetor females significantly (1.5-13 fold) increased the mycoses level in clusters of G. mellonella, with 40% of the larvae infected with ftmgal conidia. Envenomation by H. hebetor increased conidia germination on the cuticles of the wax moth larvae by 4.4 fold. An enhanced germination rate (2 fold) was registered in the n- hexane epicuticular extract of envenomated larvae compared to that of healthy larvae. Both envenomation and mycoses enhanced the phenoloxidase (PO) activity in the integument of G. mellonella and, in contrast, decreased the encapsulation rate in hemolymphs. We hypothesize that changes in the integument property and inhibition of cellular immunity provide the highest infection efficacy of entomopathogenic fungi with H. hebetor.
基金supported by the National Natural Science Foundation of China(Grant No.51205153)the Natural Science Foundation of Jilin Province(Grant No.20140101072JC)the 2018"13th Five-Year"Scientific Research Planning Project of the Education Department of Jilin Province as well as the 2018 Science and Technology Development Plan of Jilin Province-International Science and Technology Cooperation Project(Grant No.20180414011GH)
文摘Although electric vehicle fully exhibits its comparative merits of energy conservation and environmental friendliness, further improvement of its traction energy efficiency lacks comprehensive investigations in the past. In this paper, the effect of the torque vectoring on traction energy conservation during cornering for a rear-wheel-independent-drive electric vehicle is investigated.Firstly, turning resistance coefficient and energy conservation mechanism of torque vectoring are derived from the single track dynamic model. Next, an optimal torque vectoring control strategy based on genetic algorithm is proposed, with the consideration of the influence of the operation-point change of the in-wheel motors, to find out the best torque vectoring ratio offline. Finally,various simulation tests are conducted to validate the energy conservation effect after Simulink modelling. The results verify that though the optimization of the operating region of the motors is the main part for tractive energy conservation, the contribution of torque vectoring itself can reach up to 1.7% in some typical cases.
基金funded by the Pyramid Talent Training Project of Beijing University of Civil Engineering and Architecture under Grant GJZJ20220802。
文摘Accurately estimating the State of Health(SOH)and Remaining Useful Life(RUL)of lithium-ion batteries(LIBs)is crucial for the continuous and stable operation of battery management systems.However,due to the complex internal chemical systems of LIBs and the nonlinear degradation of their performance,direct measurement of SOH and RUL is challenging.To address these issues,the Twin Support Vector Machine(TWSVM)method is proposed to predict SOH and RUL.Initially,the constant current charging time of the lithium battery is extracted as a health indicator(HI),decomposed using Variational Modal Decomposition(VMD),and feature correlations are computed using Importance of Random Forest Features(RF)to maximize the extraction of critical factors influencing battery performance degradation.Furthermore,to enhance the global search capability of the Convolution Optimization Algorithm(COA),improvements are made using Good Point Set theory and the Differential Evolution method.The Improved Convolution Optimization Algorithm(ICOA)is employed to optimize TWSVM parameters for constructing SOH and RUL prediction models.Finally,the proposed models are validated using NASA and CALCE lithium-ion battery datasets.Experimental results demonstrate that the proposed models achieve an RMSE not exceeding 0.007 and an MAPE not exceeding 0.0082 for SOH and RUL prediction,with a relative error in RUL prediction within the range of[-1.8%,2%].Compared to other models,the proposed model not only exhibits superior fitting capability but also demonstrates robust performance.
基金This work is funded by the National Natural Science Foundation of China under Grant 51875235the Automobile Environmental Protection Innovation Leading Plan of FAW Volkswagen and China Environmental Protection Foundation,as well as in part by the Fundamental Research Funds for Central Universities of China under Grant 2020-JCXK-24.
文摘In-wheel motor-drive electric vehicles have the advantage of independently controllable wheel torque and the disadvantages of unsprung mass rise and power restriction.To address the disadvantages,a centralized layout electric torque vectoring drive-axle system(E-TVDS)with dual motors is proposed,which can realize arbitrary distribution of driving torque between the left and right wheels.First,the speed and torque distribution principle of E-TVDS based on velocity diagram are analyzed,and a virtual prototype of the whole vehicle with basic gear ratio relation model of the E-TVDS is built for simulation to verify the theoretical results and the basic effect of E-TVDS on the steering performance of the vehicle.Second,the charac-teristics of 36 types of the novel E-TVDS topology structure are compared and analyzed,and the optimal structure scheme is selected.Third,the accurate multiple degrees of freedom dynamic model for the optimal structure is established by using the bond graph method,and its dynamic response characteristics are analyzed.The results show that the vehicle equipped with the proposed E-TVDS can distribute the driving torque with the almost identical amount but opposite sign between the left and right wheels in any direction,and varying amount according to different chassis dynamics control requirements,and the torque response performance is great with little delay and overshoot.The function and dynamic response of the proposed E-TVDS show that it has potential application value for various performance improvements of electric vehicles.
基金supported by National Natural Science Foundation of China(12374358,91950207)Guangdong Basic and Applied Basic Research Foundation(2024A1515010420).
文摘Glucose molecules are of great significance being one of the most important molecules in metabolic chain.However,due to the small Raman scattering cross-section and weak/non-adsorption on bare metals,accurately obtaining their"fingerprint information"remains a huge obstacle.Herein,we developed a tip-enhanced Raman scattering(TERS)technique to address this challenge.Adopting an optical fiber radial vector mode internally illuminates the plasmonic fiber tip to effectively suppress the background noise while generating a strong electric-field enhanced tip hotspot.Furthermore,the tip hotspot approaching the glucose molecules was manipulated via the shear-force feedback to provide more freedom for selecting substrates.Consequently,our TERS technique achieves the visualization of all Raman modes of glucose molecules within spectral window of 400-3200 cm^(-1),which is not achievable through the far-field/surface-enhanced Raman,or the existing TERS techniques.Our TERS technique offers a powerful tool for accurately identifying Raman scattering of molecules,paving the way for biomolecular analysis.