Slope stability analysis is a classical mechanical problem in geotechnical engineering and engineering geology.It is of great significance to study the stability evolution of expansive soil slopes for engineering cons...Slope stability analysis is a classical mechanical problem in geotechnical engineering and engineering geology.It is of great significance to study the stability evolution of expansive soil slopes for engineering construction in expansive soil areas.Most of the existing studies evaluate the slope stability by analyzing the limit equilibrium state of the slope,and the analysis method for the stability evolution considering the damage softening of the shear zone is lacking.In this study,the large deformation shear mechanical behavior of expansive soil was investigated by ring shear test.The damage softening characteristic of expansive soil in the shear zone was analyzed,and a shear damage model reflecting the damage softening behavior of expansive soil was derived based on the damage theory.Finally,by skillfully combining the vector sum method and the shear damage model,an analysis method for the stability evolution of the expansive soil slope considering the shear zone damage softening was proposed.The results show that the shear zone subjected to large displacement shear deformation exhibits an obvious damage softening phenomenon.The damage variable equation based on the logistic function can be well used to describe the shear damage characteristics of expansive soil,and the proposed shear damage model is in good agreement with the ring shear test results.The vector sum method considering the damage softening behavior of the shear zone can be well applied to analyze the stability evolution characteristics of the expansive soil slope.The stability factor of the expansive soil slope decreases with the increase of shear displacement,showing an obvious progressive failure behavior.展开更多
The vibration characteristics and dynamic responses of rock and soil under seismic load can be estimated with dynamic finite element method (DFEM). Combining with the DFEM, the vector sum analysis method (VSAM) is...The vibration characteristics and dynamic responses of rock and soil under seismic load can be estimated with dynamic finite element method (DFEM). Combining with the DFEM, the vector sum analysis method (VSAM) is employed in seismic stability analysis of a slope in this paper. Different from other conventional methods, the VSAM is proposed based on the vector characteristic of force and current stress state of the slope. The dynamic stress state of the slope at any moment under seismic load can he obtained by the DFEM, thus the factor of safety of the slope at any moment during earthquake can be easily obtained with the VSAM in consideration of the DFEM. Then, the global stability of the slope can be estimated on the basis of time-history curve of factor of safety and reliability theory. The VSAM is applied to a homogeneous slope under seismic load. The factor of safety of the slope is 1.30 under gravity only and the dynamic factor of safety under seismic load is 1.21. The calculating results show that the dynamic characteristics and stability state of the slope with input ground motion can be actually analyzed. It is believed that the VSAM is a feasible and practical approach to estimate the dynamic stability of slopes under seismic load.展开更多
National and international research on regional development has matured from the use of single elements and indicators to the application of comprehensive multi-element and multi-indicator measures. We selected 12 ind...National and international research on regional development has matured from the use of single elements and indicators to the application of comprehensive multi-element and multi-indicator measures. We selected 12 indicators from six dimensions for analysis in this study, including income, consumption, education, population urbanization, traffic, and indoor living facilities. We then proposed the polyhedron method to comprehensively measure levels of regional multidimensional development. We also enhanced the polygon and vector sum methods to render them more suitable for studying the status of regional multidimensional development. Finally, we measured levels of regional multidimensional development at county, city, and provincial scales across China and analyzed spatial differences using the three methods above and the weighted sum method applied widely. The results of this study reveal the presence of remarkable regional differences at the county scale across China in terms of single and multidimensional levels of regional development. Analyses show that values of the regional multidimensional development index (RMDI) are high in eastern coastal areas, intermediate in the midlands and in northern border regions, and low in the southwest and in western border regions. Districts characterized by enhanced and the highest levels of this index are distributed in eastern coastal areas, including cities in central and western regions, as well as areas characterized by the development of energy and mineral resources. The regional distribution of reduced and the lowest levels of this index is consistent with concentrations of areas that have always been impoverished. Correlation analyses of the results generated by the four methods at provincial, city, and county scales show that all are equivalent in practical application and can be used to generate satisfactory measures for regional multidimensional development. Additiona~ correlation analyses between RMDI values calculated using the polyhedron method and per capita gross domestic product (GDP) demonstrate that the latter is not a meaningful proxy for the level of regional multidimensional development.展开更多
基金supported by the National Key Research and Development Program of China(Grant No.2019YFC1509901).
文摘Slope stability analysis is a classical mechanical problem in geotechnical engineering and engineering geology.It is of great significance to study the stability evolution of expansive soil slopes for engineering construction in expansive soil areas.Most of the existing studies evaluate the slope stability by analyzing the limit equilibrium state of the slope,and the analysis method for the stability evolution considering the damage softening of the shear zone is lacking.In this study,the large deformation shear mechanical behavior of expansive soil was investigated by ring shear test.The damage softening characteristic of expansive soil in the shear zone was analyzed,and a shear damage model reflecting the damage softening behavior of expansive soil was derived based on the damage theory.Finally,by skillfully combining the vector sum method and the shear damage model,an analysis method for the stability evolution of the expansive soil slope considering the shear zone damage softening was proposed.The results show that the shear zone subjected to large displacement shear deformation exhibits an obvious damage softening phenomenon.The damage variable equation based on the logistic function can be well used to describe the shear damage characteristics of expansive soil,and the proposed shear damage model is in good agreement with the ring shear test results.The vector sum method considering the damage softening behavior of the shear zone can be well applied to analyze the stability evolution characteristics of the expansive soil slope.The stability factor of the expansive soil slope decreases with the increase of shear displacement,showing an obvious progressive failure behavior.
基金Supported by the Program of Yunnan Provincial Institute of Communications Planning,Design and Research (2011(D)11-b)
文摘The vibration characteristics and dynamic responses of rock and soil under seismic load can be estimated with dynamic finite element method (DFEM). Combining with the DFEM, the vector sum analysis method (VSAM) is employed in seismic stability analysis of a slope in this paper. Different from other conventional methods, the VSAM is proposed based on the vector characteristic of force and current stress state of the slope. The dynamic stress state of the slope at any moment under seismic load can he obtained by the DFEM, thus the factor of safety of the slope at any moment during earthquake can be easily obtained with the VSAM in consideration of the DFEM. Then, the global stability of the slope can be estimated on the basis of time-history curve of factor of safety and reliability theory. The VSAM is applied to a homogeneous slope under seismic load. The factor of safety of the slope is 1.30 under gravity only and the dynamic factor of safety under seismic load is 1.21. The calculating results show that the dynamic characteristics and stability state of the slope with input ground motion can be actually analyzed. It is believed that the VSAM is a feasible and practical approach to estimate the dynamic stability of slopes under seismic load.
基金National Natural Science Foundation of China,No.41171449Knowledge Innovation Project of the Chinese Academy of Sciences,No.KZZD-EW-06
文摘National and international research on regional development has matured from the use of single elements and indicators to the application of comprehensive multi-element and multi-indicator measures. We selected 12 indicators from six dimensions for analysis in this study, including income, consumption, education, population urbanization, traffic, and indoor living facilities. We then proposed the polyhedron method to comprehensively measure levels of regional multidimensional development. We also enhanced the polygon and vector sum methods to render them more suitable for studying the status of regional multidimensional development. Finally, we measured levels of regional multidimensional development at county, city, and provincial scales across China and analyzed spatial differences using the three methods above and the weighted sum method applied widely. The results of this study reveal the presence of remarkable regional differences at the county scale across China in terms of single and multidimensional levels of regional development. Analyses show that values of the regional multidimensional development index (RMDI) are high in eastern coastal areas, intermediate in the midlands and in northern border regions, and low in the southwest and in western border regions. Districts characterized by enhanced and the highest levels of this index are distributed in eastern coastal areas, including cities in central and western regions, as well as areas characterized by the development of energy and mineral resources. The regional distribution of reduced and the lowest levels of this index is consistent with concentrations of areas that have always been impoverished. Correlation analyses of the results generated by the four methods at provincial, city, and county scales show that all are equivalent in practical application and can be used to generate satisfactory measures for regional multidimensional development. Additiona~ correlation analyses between RMDI values calculated using the polyhedron method and per capita gross domestic product (GDP) demonstrate that the latter is not a meaningful proxy for the level of regional multidimensional development.