In this manuscript,the notion of a hesitant fuzzy soft fixed point is introduced.Using this notion and the concept of Suzuki-type(μ,ν)-weak contraction for hesitant fuzzy soft set valued-mapping,some fixed point res...In this manuscript,the notion of a hesitant fuzzy soft fixed point is introduced.Using this notion and the concept of Suzuki-type(μ,ν)-weak contraction for hesitant fuzzy soft set valued-mapping,some fixed point results are established in the framework of metric spaces.Based on the presented work,some examples reflecting decision-making problems related to real life are also solved.The suggested method’s flexibility and efficacy compared to conventional techniques are demonstrated in decision-making situations involving uncertainty,such as choosing the best options in multi-criteria settings.We noted that the presented work combines and generalizes two major concepts,the idea of soft sets and hesitant fuzzy set-valued mapping from the existing literature.展开更多
The concepts of alpha-order Clarke's derivative, alpha-order Adjacent derivative and alpha-order G.Bouligand derivative of set-valued mappings are introduced, their properties are studied, with which the Fritz Joh...The concepts of alpha-order Clarke's derivative, alpha-order Adjacent derivative and alpha-order G.Bouligand derivative of set-valued mappings are introduced, their properties are studied, with which the Fritz John optimality condition of set-valued vector optimization is established. Finally, under the assumption of pseudoconvexity, the optimality condition is proved to be sufficient.展开更多
Several equivalent statements of generalized subconvexlike set-valued map are established in ordered linear spaces. Using vector closure, we introduce Benson proper efficient solution of vector optimization problem. U...Several equivalent statements of generalized subconvexlike set-valued map are established in ordered linear spaces. Using vector closure, we introduce Benson proper efficient solution of vector optimization problem. Under the assumption of generalized subconvexlikeness, scalarization, multiplier and saddle point theorems are obtained in the sense of Benson proper efficiency.展开更多
In this paper, we introduce a concept of quasi C-lower semicontinuity for setvalued mapping and provide a vector version of Ekeland's theorem related to set-valued vector equilibrium problems. As applications, we der...In this paper, we introduce a concept of quasi C-lower semicontinuity for setvalued mapping and provide a vector version of Ekeland's theorem related to set-valued vector equilibrium problems. As applications, we derive an existence theorem of weakly efficient solution for set-valued vector equilibrium problems without the assumption of convexity of the constraint set and the assumptions of convexity and monotonicity of the set-valued mapping. We also obtain an existence theorem of ε-approximate solution for set-valued vector equilibrium problems without the assumptions of compactness and convexity of the constraint set.展开更多
In this paper, two kinds of parametric generalized vector quasi-equilibrium problems are introduced and the relations between them are studied. The upper and lower semicontinuity of their solution sets to parameters a...In this paper, two kinds of parametric generalized vector quasi-equilibrium problems are introduced and the relations between them are studied. The upper and lower semicontinuity of their solution sets to parameters are investigated.展开更多
One of the classical approaches in the analysis of a variational inequality problem is to transform it into an equivalent optimization problem via the notion of gap function. The gap functions are useful tools in deri...One of the classical approaches in the analysis of a variational inequality problem is to transform it into an equivalent optimization problem via the notion of gap function. The gap functions are useful tools in deriving the error bounds which provide an estimated distance between a specific point and the exact solution of variational inequality problem. In this paper, we follow a similar approach for set-valued vector quasi variational inequality problems and define the gap functions based on scalarization scheme as well as the one with no scalar parameter. The error bounds results are obtained under fixed point symmetric and locally α-Holder assumptions on the set-valued map describing the domain of solution space of a set-valued vector quasi variational inequality problem.展开更多
This note studies the optimality conditions of vector optimization problems involving generalized convexity in locally convex spaces. Based upon the concept of Dini set-valued directional derivatives, the necessary an...This note studies the optimality conditions of vector optimization problems involving generalized convexity in locally convex spaces. Based upon the concept of Dini set-valued directional derivatives, the necessary and sufficient optimality conditions are established for Henig proper and strong minimal solutions respectively in generalized preinvex vector optimization problems.展开更多
By using an existence theorems of maximal elements for a family of set-valued mappings in G-convex spaces due to the author, some new nonempty intersection theorems for a family of set-valued mappings were established...By using an existence theorems of maximal elements for a family of set-valued mappings in G-convex spaces due to the author, some new nonempty intersection theorems for a family of set-valued mappings were established in noncompact product G-convex spaces. As applications, some equilibrium existence theorems for a system of generalized vector equilibrium problems were proved in noncompact product G-convex spaces. These theorems unify, improve and generalize some important known results in literature.展开更多
By using an existence theorems of maximal elements for a family of set-valued mappings in G-convex spaces due to the author, some new nonempty intersection theorems for a family of set-valued mappings were established...By using an existence theorems of maximal elements for a family of set-valued mappings in G-convex spaces due to the author, some new nonempty intersection theorems for a family of set-valued mappings were established in noncompact product G-convex spaces. As applications, some equilibrium existence theorems for a system of generalized vector equilibrium problems were proved in noncompact product G-convex spaces. These theorems unify, improve and generalize some important known results in literature.展开更多
In this article, we study Levitin-Polyak type well-posedness for generalized vector equilibrium problems with abstract and functional constraints. Criteria and characterizations for these types of well-posednesses are...In this article, we study Levitin-Polyak type well-posedness for generalized vector equilibrium problems with abstract and functional constraints. Criteria and characterizations for these types of well-posednesses are given.展开更多
In this paper, a characterization of tightly properly efficient solutions of set-valued optimization problem is obtained. The concept of the well-posedness for a special scalar problem is linked with the tightly prope...In this paper, a characterization of tightly properly efficient solutions of set-valued optimization problem is obtained. The concept of the well-posedness for a special scalar problem is linked with the tightly properly efficient solutions of set-valued optimization problem.展开更多
In this paper,we study a class of completely generalized strongly set-valued nonlinearquasi-complementarity problems and discuss the existence of solutions for this kind of quasi-complementariy problems without compac...In this paper,we study a class of completely generalized strongly set-valued nonlinearquasi-complementarity problems and discuss the existence of solutions for this kind of quasi-complementariy problems without compactness and the convergence of iterative sequencesgenerated by the algorithms.展开更多
With the help of a level mapping,this paper mainly investigates the semicontinuity of minimal solution set mappings for set-valued vector optimization problems.First,we introduce a kind of level mapping which generali...With the help of a level mapping,this paper mainly investigates the semicontinuity of minimal solution set mappings for set-valued vector optimization problems.First,we introduce a kind of level mapping which generalizes one given in Han and Gong(Optimization 65:1337–1347,2016).Then,we give a sufficient condition for the upper semicontinuity and the lower semicontinuity of the level mapping.Finally,in terms of the semicontinuity of the level mapping,we establish the upper semicontinuity and the lower semicontinuity of the minimal solution set mapping to parametric setvalued vector optimization problems under the C-Hausdorff continuity instead of the continuity in the sense of Berge.展开更多
A new class of bilcvel generalized mixed equilibrium problems involving setvalued mappings is introduced and studied in a real Banach space. By using the auxiliary principle technique, new iterative algorithms for sol...A new class of bilcvel generalized mixed equilibrium problems involving setvalued mappings is introduced and studied in a real Banach space. By using the auxiliary principle technique, new iterative algorithms for solving the generalized mixed equilibrium problems and bilevel generalized mixed equilibrium problems involving set-valued mappings are suggested and analyzed. Existence of solutions and strong convergence of the iterative sequences generated by the algorithms are proved under quite mild conditions. The behavior of the solution set of the generalized mixed equilibrium problems and bilevel generalized mixed equilibrium problems is also discussed. These results are new and generalize some recent results in this field.展开更多
There are two approaches of defining the solutions of a set-valued optimization problem: vector criterion and set criterion. This note is devoted to higher-order optimality conditions using both criteria of solutions...There are two approaches of defining the solutions of a set-valued optimization problem: vector criterion and set criterion. This note is devoted to higher-order optimality conditions using both criteria of solutions for a constrained set-valued optimization problem in terms of higher-order radial derivatives. In the case of vector criterion, some optimality conditions are derived for isolated (weak) minimizers. With set criterion, necessary and sufficient optimality conditions are established for minimal solutions relative to lower set-order relation.展开更多
By using Gerstewitz functions, we establish a new equilibrium version of Ekeland varia- tional principle, which improves the related results by weakening both the lower boundedness and the lower semi-continuity of the...By using Gerstewitz functions, we establish a new equilibrium version of Ekeland varia- tional principle, which improves the related results by weakening both the lower boundedness and the lower semi-continuity of the objective bimaps. Applying the new version of Ekeland principle, we obtain some existence theorems on solutions for set-valued vector equilibrium problems, where the most used assumption on compactness of domains is weakened. In the setting of X complete metric spaces (Z, d), we present an existence result of solutions for set-valued vector equilibrium problems, which only requires that the domain X C Z is countably compact in any Hausdorff topology weaker than that induced by d. When (Z, d) is a Fechet space (i.e., a complete metrizable locally convex space), our existence result only requires that the domain C Z is weakly compact. Furthermore, in the setting of non-compact domains, we deduce several existence theorems on solutions for set-valued vector equilibrium problems, which extend and improve the related known results.展开更多
In this paper, we study Henig efficiency in vector optimization with nearly cone-subconvexlike set-valued function. The existence of Henig efficient point is proved and characterization of Henig efficiency is establis...In this paper, we study Henig efficiency in vector optimization with nearly cone-subconvexlike set-valued function. The existence of Henig efficient point is proved and characterization of Henig efficiency is established using the method of Lagrangian multiplier. As an interesting application of the results in this paper, we establish a Lagrange multiplier theorem for super efficiency in vector optimization with nearly conesubconvexlike set-valued function.展开更多
This paper establishes some suffcient conditions for the lower semicontinuity of the effcient solution mapping for the semi-infinite vector optimization problem with perturbations of both the objective function and th...This paper establishes some suffcient conditions for the lower semicontinuity of the effcient solution mapping for the semi-infinite vector optimization problem with perturbations of both the objective function and the constraint set in normed linear spaces. The constraint set is the set of weakly effcient solutions of vector equilibrium problem, and perturbed by the perturbation of the criterion mapping to the vector equilibrium problem.展开更多
In this paper, firstly, a new notion of generalized cone convex set-valued map is introduced in real normed spaces. Secondly, a property of the generalized cone convex set-valued map involving the contingent epideriva...In this paper, firstly, a new notion of generalized cone convex set-valued map is introduced in real normed spaces. Secondly, a property of the generalized cone convex set-valued map involving the contingent epiderivative is obtained. Finally, as the applications of this property, we use the contingent epiderivative to establish optimality conditions of the set-valued optimization problem with generalized cone convex set-valued maps in the sense of Henig proper efficiency. The results obtained in this paper generalize and improve some known results in the literature.展开更多
基金funded by National Science,Research and Innovation Fund(NSRF)King Mongkut's University of Technology North Bangkok with Contract No.KMUTNB-FF-68-B-46.
文摘In this manuscript,the notion of a hesitant fuzzy soft fixed point is introduced.Using this notion and the concept of Suzuki-type(μ,ν)-weak contraction for hesitant fuzzy soft set valued-mapping,some fixed point results are established in the framework of metric spaces.Based on the presented work,some examples reflecting decision-making problems related to real life are also solved.The suggested method’s flexibility and efficacy compared to conventional techniques are demonstrated in decision-making situations involving uncertainty,such as choosing the best options in multi-criteria settings.We noted that the presented work combines and generalizes two major concepts,the idea of soft sets and hesitant fuzzy set-valued mapping from the existing literature.
基金the National Natural Science Foundation(69972036) and the Natural Science Foundation of Shanxi province(995L02)
文摘The concepts of alpha-order Clarke's derivative, alpha-order Adjacent derivative and alpha-order G.Bouligand derivative of set-valued mappings are introduced, their properties are studied, with which the Fritz John optimality condition of set-valued vector optimization is established. Finally, under the assumption of pseudoconvexity, the optimality condition is proved to be sufficient.
文摘Several equivalent statements of generalized subconvexlike set-valued map are established in ordered linear spaces. Using vector closure, we introduce Benson proper efficient solution of vector optimization problem. Under the assumption of generalized subconvexlikeness, scalarization, multiplier and saddle point theorems are obtained in the sense of Benson proper efficiency.
基金supported by the National Natural Science Foundation of China (11061023)
文摘In this paper, we introduce a concept of quasi C-lower semicontinuity for setvalued mapping and provide a vector version of Ekeland's theorem related to set-valued vector equilibrium problems. As applications, we derive an existence theorem of weakly efficient solution for set-valued vector equilibrium problems without the assumption of convexity of the constraint set and the assumptions of convexity and monotonicity of the set-valued mapping. We also obtain an existence theorem of ε-approximate solution for set-valued vector equilibrium problems without the assumptions of compactness and convexity of the constraint set.
基金The NSF(10871226) of Chinathe NSF(ZR2009AL006) of Shandong Province
文摘In this paper, two kinds of parametric generalized vector quasi-equilibrium problems are introduced and the relations between them are studied. The upper and lower semicontinuity of their solution sets to parameters are investigated.
文摘One of the classical approaches in the analysis of a variational inequality problem is to transform it into an equivalent optimization problem via the notion of gap function. The gap functions are useful tools in deriving the error bounds which provide an estimated distance between a specific point and the exact solution of variational inequality problem. In this paper, we follow a similar approach for set-valued vector quasi variational inequality problems and define the gap functions based on scalarization scheme as well as the one with no scalar parameter. The error bounds results are obtained under fixed point symmetric and locally α-Holder assumptions on the set-valued map describing the domain of solution space of a set-valued vector quasi variational inequality problem.
文摘This note studies the optimality conditions of vector optimization problems involving generalized convexity in locally convex spaces. Based upon the concept of Dini set-valued directional derivatives, the necessary and sufficient optimality conditions are established for Henig proper and strong minimal solutions respectively in generalized preinvex vector optimization problems.
文摘By using an existence theorems of maximal elements for a family of set-valued mappings in G-convex spaces due to the author, some new nonempty intersection theorems for a family of set-valued mappings were established in noncompact product G-convex spaces. As applications, some equilibrium existence theorems for a system of generalized vector equilibrium problems were proved in noncompact product G-convex spaces. These theorems unify, improve and generalize some important known results in literature.
文摘By using an existence theorems of maximal elements for a family of set-valued mappings in G-convex spaces due to the author, some new nonempty intersection theorems for a family of set-valued mappings were established in noncompact product G-convex spaces. As applications, some equilibrium existence theorems for a system of generalized vector equilibrium problems were proved in noncompact product G-convex spaces. These theorems unify, improve and generalize some important known results in literature.
基金supported by the National Science Foundation of China and Shanghai Pujian Program
文摘In this article, we study Levitin-Polyak type well-posedness for generalized vector equilibrium problems with abstract and functional constraints. Criteria and characterizations for these types of well-posednesses are given.
文摘In this paper, a characterization of tightly properly efficient solutions of set-valued optimization problem is obtained. The concept of the well-posedness for a special scalar problem is linked with the tightly properly efficient solutions of set-valued optimization problem.
文摘In this paper,we study a class of completely generalized strongly set-valued nonlinearquasi-complementarity problems and discuss the existence of solutions for this kind of quasi-complementariy problems without compactness and the convergence of iterative sequencesgenerated by the algorithms.
基金This research was supported by the National Natural Science Foundation of China(No.11801051).
文摘With the help of a level mapping,this paper mainly investigates the semicontinuity of minimal solution set mappings for set-valued vector optimization problems.First,we introduce a kind of level mapping which generalizes one given in Han and Gong(Optimization 65:1337–1347,2016).Then,we give a sufficient condition for the upper semicontinuity and the lower semicontinuity of the level mapping.Finally,in terms of the semicontinuity of the level mapping,we establish the upper semicontinuity and the lower semicontinuity of the minimal solution set mapping to parametric setvalued vector optimization problems under the C-Hausdorff continuity instead of the continuity in the sense of Berge.
基金supported by the Scientific Research Fun of Sichuan Normal University (11ZDL01)the Sichuan Province Leading Academic Discipline Project (SZD0406)
文摘A new class of bilcvel generalized mixed equilibrium problems involving setvalued mappings is introduced and studied in a real Banach space. By using the auxiliary principle technique, new iterative algorithms for solving the generalized mixed equilibrium problems and bilevel generalized mixed equilibrium problems involving set-valued mappings are suggested and analyzed. Existence of solutions and strong convergence of the iterative sequences generated by the algorithms are proved under quite mild conditions. The behavior of the solution set of the generalized mixed equilibrium problems and bilevel generalized mixed equilibrium problems is also discussed. These results are new and generalize some recent results in this field.
基金Supported by the National Natural Science Foundation of China(11361001)Natural Science Foundation of Ningxia(NZ14101)
文摘There are two approaches of defining the solutions of a set-valued optimization problem: vector criterion and set criterion. This note is devoted to higher-order optimality conditions using both criteria of solutions for a constrained set-valued optimization problem in terms of higher-order radial derivatives. In the case of vector criterion, some optimality conditions are derived for isolated (weak) minimizers. With set criterion, necessary and sufficient optimality conditions are established for minimal solutions relative to lower set-order relation.
基金Supported by National Natural Science Foundation of China(Grant Nos.11471236 and 11561049)
文摘By using Gerstewitz functions, we establish a new equilibrium version of Ekeland varia- tional principle, which improves the related results by weakening both the lower boundedness and the lower semi-continuity of the objective bimaps. Applying the new version of Ekeland principle, we obtain some existence theorems on solutions for set-valued vector equilibrium problems, where the most used assumption on compactness of domains is weakened. In the setting of X complete metric spaces (Z, d), we present an existence result of solutions for set-valued vector equilibrium problems, which only requires that the domain X C Z is countably compact in any Hausdorff topology weaker than that induced by d. When (Z, d) is a Fechet space (i.e., a complete metrizable locally convex space), our existence result only requires that the domain C Z is weakly compact. Furthermore, in the setting of non-compact domains, we deduce several existence theorems on solutions for set-valued vector equilibrium problems, which extend and improve the related known results.
基金the Natural Science Foundation of Zhejiang Province,China(M103089)
文摘In this paper, we study Henig efficiency in vector optimization with nearly cone-subconvexlike set-valued function. The existence of Henig efficient point is proved and characterization of Henig efficiency is established using the method of Lagrangian multiplier. As an interesting application of the results in this paper, we establish a Lagrange multiplier theorem for super efficiency in vector optimization with nearly conesubconvexlike set-valued function.
基金supported by the National Natural Science Foundation of China under Grant Nos.1106102311201216and 11471291
文摘This paper establishes some suffcient conditions for the lower semicontinuity of the effcient solution mapping for the semi-infinite vector optimization problem with perturbations of both the objective function and the constraint set in normed linear spaces. The constraint set is the set of weakly effcient solutions of vector equilibrium problem, and perturbed by the perturbation of the criterion mapping to the vector equilibrium problem.
基金supported by the National Nature Science Foundation of China(11431004,11471291)the General Project of Chongqing Frontier and Applied Foundation Research(cstc2015jcyj A00050)the Key Project of Chongqing Frontier and Applied Foundation Research(cstc2017jcyj BX0055,cstc2015jcyj BX0113)
文摘In this paper, firstly, a new notion of generalized cone convex set-valued map is introduced in real normed spaces. Secondly, a property of the generalized cone convex set-valued map involving the contingent epiderivative is obtained. Finally, as the applications of this property, we use the contingent epiderivative to establish optimality conditions of the set-valued optimization problem with generalized cone convex set-valued maps in the sense of Henig proper efficiency. The results obtained in this paper generalize and improve some known results in the literature.