We investigate a novel spatial geometric phase of hybrid-polarized vector fields consisting of linear, elliptical and circular polarizations by Young's two-slit interferometer instead of the widely used Mach-Zehnder ...We investigate a novel spatial geometric phase of hybrid-polarized vector fields consisting of linear, elliptical and circular polarizations by Young's two-slit interferometer instead of the widely used Mach-Zehnder interferometer. This spatial geometric phase can be manipulated by engineering the spatial configuration of hybrid polarizations, and is directly related to the topological charge, the local states of polarization and the rotational symmetry of hybrid-polarized vector optical fields. The unique feature of geometric phase has implications in quantum information science as well as other physical systems such as electron vortex beams.展开更多
As an intrinsic nature of light,polarization plays a critical role in the vectorial characteristic of optical fields.Vector optical fields with an inhomogeneous polarization distribution show many exotic phenomena and...As an intrinsic nature of light,polarization plays a critical role in the vectorial characteristic of optical fields.Vector optical fields with an inhomogeneous polarization distribution show many exotic phenomena and applications not existing in scalar optical fields.Existing polarization optics,however,mainly focuses on the manipulation of polarization distribution on a single transverse plane.Here,we propose a synthetic approach to realize polarization manipulation with spatial and temporal degrees.The underlying mechanism relies on decoupling two orthogonal polarization states through asymmetric photonic spin-orbit interactions to obtain customer-tailored phase and amplitude difference in both transverse and longitudinal space,thereby changing the resulting polarization distribution at will in three-dimensional(3 D)space.Remarkably,a longitudinally varied cylindrical vector field is experimentally demonstrated by a monolayer metasurface,in which the polarization distribution switches continuously and periodically between radial and azimuthal polarization.Furthermore,the vector field can be dynamically tuned by rotating the incident polarization state.Our work extends polarization optics from two-dimensional space to 3 D space,allowing the arbitrary generation and manipulation of 3D vector optical fields with temporal tunability.展开更多
The redistribution of the energy flow of tightly focused ellipticity-variant vector optical fields is presented.We theoretically design and experimentally generate this kind of ellipticity-variant vector optical field...The redistribution of the energy flow of tightly focused ellipticity-variant vector optical fields is presented.We theoretically design and experimentally generate this kind of ellipticity-variant vector optical field, and further explore the redistribution of the energy flow in the focal plane by designing different phase masks including fanlike phase masks and vortex phase masks on them. The flexibly controlled transverse energy flow rings of the tightly focused ellipticity-variant vector optical fields with and without phase masks can be used to transport multiple absorptive particles along certain paths, which may be widely applied in optical trapping and manipulation.展开更多
Orbital angular momentum(OAM), as a fundamental parameter of a photon, has attracted great attention in recent years. Although various properties and applications have been developed by modulating the OAM of photons, ...Orbital angular momentum(OAM), as a fundamental parameter of a photon, has attracted great attention in recent years. Although various properties and applications have been developed by modulating the OAM of photons, there is rare research about the non-uniform OAM. We propose and generate a new kind of continuously tunable azimuthally non-uniform OAM for the first time, to the best of our knowledge, which is carried by a hybridly polarized vector optical field with a cylindrically symmetric intensity profile and a complex polarization singularity. We also present the perfect vector optical field carrying non-uniform OAM with a fixed radius independent of topological charges, which can propagate steadily without radial separation, solving the problem of the unsteady propagation due to the broadened OAM spectrum of the non-uniform OAM. This new kind of tunable non-uniform OAM with a cylindrical symmetric intensity profile, complex polarization singularity, and propagation stability enriches the family of OAMs and can be widely used in many regions such as optical manipulation, quantum optics, and optical communications.展开更多
Polarization oscillating beams(POB),characterized by variable local polarization states during propagation that are independent of birefringence or nonlinear effects,present a unique platform for light-matter interact...Polarization oscillating beams(POB),characterized by variable local polarization states during propagation that are independent of birefringence or nonlinear effects,present a unique platform for light-matter interactions.However,previous studies have been constrained by a beam superposition framework that identifies scalar beams as orthogonal polarization bases,restricting their extension to accelerating beams.Here,we propose a new framework for constructing POB,where the phase,amplitude,and polarization correspondences between the state-space representation and the real-space dynamics are explored.According to unified rules,concurrent and arbitrary controls of the trajectory,intensity,and polarization state along the optical path of caustic beams are realized.This will expand the theoretical and practical value of POB in classical entanglement,nontrivial optical forces,chirality detection,and other related domains,while potentially offering insights into the multidimensional manipulation of vector fields.展开更多
基金Supported by the National Natural Science Foundation of China under Grant Nos 11534006,11674184 and 11374166the Natural Science Foundation of Tianjin under Grant No 16JC2DJC31300Collaborative Innovation Center of Extreme Optics
文摘We investigate a novel spatial geometric phase of hybrid-polarized vector fields consisting of linear, elliptical and circular polarizations by Young's two-slit interferometer instead of the widely used Mach-Zehnder interferometer. This spatial geometric phase can be manipulated by engineering the spatial configuration of hybrid polarizations, and is directly related to the topological charge, the local states of polarization and the rotational symmetry of hybrid-polarized vector optical fields. The unique feature of geometric phase has implications in quantum information science as well as other physical systems such as electron vortex beams.
基金supported by the National Key Research and Development Program of China(Grant No.2019YFF0216400)Sichuan Science and Technology Program(Grant No.2021ZYCD002)+1 种基金China Postdoctoral Science Foundation(Grant No.2021T140670)National Natural Science Foundation of China(Grant Nos.62175242,and U20A20217)。
文摘As an intrinsic nature of light,polarization plays a critical role in the vectorial characteristic of optical fields.Vector optical fields with an inhomogeneous polarization distribution show many exotic phenomena and applications not existing in scalar optical fields.Existing polarization optics,however,mainly focuses on the manipulation of polarization distribution on a single transverse plane.Here,we propose a synthetic approach to realize polarization manipulation with spatial and temporal degrees.The underlying mechanism relies on decoupling two orthogonal polarization states through asymmetric photonic spin-orbit interactions to obtain customer-tailored phase and amplitude difference in both transverse and longitudinal space,thereby changing the resulting polarization distribution at will in three-dimensional(3 D)space.Remarkably,a longitudinally varied cylindrical vector field is experimentally demonstrated by a monolayer metasurface,in which the polarization distribution switches continuously and periodically between radial and azimuthal polarization.Furthermore,the vector field can be dynamically tuned by rotating the incident polarization state.Our work extends polarization optics from two-dimensional space to 3 D space,allowing the arbitrary generation and manipulation of 3D vector optical fields with temporal tunability.
基金National Natural Science Foundation of China(NSFC)(11374166,11534006,11674184)National key research and development program of China(2017YFA0303700,2017YFA0303800)Natural Science Foundation of Tianjin City(16JC2DJC31300)
文摘The redistribution of the energy flow of tightly focused ellipticity-variant vector optical fields is presented.We theoretically design and experimentally generate this kind of ellipticity-variant vector optical field, and further explore the redistribution of the energy flow in the focal plane by designing different phase masks including fanlike phase masks and vortex phase masks on them. The flexibly controlled transverse energy flow rings of the tightly focused ellipticity-variant vector optical fields with and without phase masks can be used to transport multiple absorptive particles along certain paths, which may be widely applied in optical trapping and manipulation.
基金the National Natural Science Foundation of China(Nos.11534006,11804187,11904199,11674184,and 11774183)Natural Science Foundation of Shandong Province(No.ZR2019BF006)+1 种基金Shandong Province Higher Educational Science and Technology Program(No.J18KA229)Collaborative Innovation Center of Extreme Optics.
文摘Orbital angular momentum(OAM), as a fundamental parameter of a photon, has attracted great attention in recent years. Although various properties and applications have been developed by modulating the OAM of photons, there is rare research about the non-uniform OAM. We propose and generate a new kind of continuously tunable azimuthally non-uniform OAM for the first time, to the best of our knowledge, which is carried by a hybridly polarized vector optical field with a cylindrically symmetric intensity profile and a complex polarization singularity. We also present the perfect vector optical field carrying non-uniform OAM with a fixed radius independent of topological charges, which can propagate steadily without radial separation, solving the problem of the unsteady propagation due to the broadened OAM spectrum of the non-uniform OAM. This new kind of tunable non-uniform OAM with a cylindrical symmetric intensity profile, complex polarization singularity, and propagation stability enriches the family of OAMs and can be widely used in many regions such as optical manipulation, quantum optics, and optical communications.
基金supported by the National Natural Science Foundation of China(Grant Nos.12474299,and 12174338).
文摘Polarization oscillating beams(POB),characterized by variable local polarization states during propagation that are independent of birefringence or nonlinear effects,present a unique platform for light-matter interactions.However,previous studies have been constrained by a beam superposition framework that identifies scalar beams as orthogonal polarization bases,restricting their extension to accelerating beams.Here,we propose a new framework for constructing POB,where the phase,amplitude,and polarization correspondences between the state-space representation and the real-space dynamics are explored.According to unified rules,concurrent and arbitrary controls of the trajectory,intensity,and polarization state along the optical path of caustic beams are realized.This will expand the theoretical and practical value of POB in classical entanglement,nontrivial optical forces,chirality detection,and other related domains,while potentially offering insights into the multidimensional manipulation of vector fields.