Three-dimensional holographic vector of atomic interaction field(3D-HoVAIF) is used to describe the chemical structures of polychlorinated naphthalenes(PCNs).After variable screening by stepwise multiple regressio...Three-dimensional holographic vector of atomic interaction field(3D-HoVAIF) is used to describe the chemical structures of polychlorinated naphthalenes(PCNs).After variable screening by stepwise multiple regression(SMR) technique,the liner relationships between gas-chromatographic relative retention time(RRT),298 K supercooled liquid pressures(logPL),n-octanol/air partition coefficient(logKOA),n-octanol/water partition coefficient(logKOW),aqueous solubilities(logSW),relative in vitro potency values(-logEROD) of PCNs and 3D-HoVAIF descriptors have been established by partial least-square(PLS) regression.The result shows that the 3D-HoVAIF descriptors can be well used to express the quantitative structure-property(activity) relationships of PCNs.Predictive capability of the models has also been demonstrated by leave-one-out cross-validation.Moreover,the predicted values have been presented for those PCNs which are lack of experimentally physico-chemical properties and biological activity by the optimum models.展开更多
Recently I published a paper in the journal ALAMT (Advances in Linear Algebra & Matrix Theory) and explored the possibility of obtaining products of vectors in dimensions higher than three [1]. In continuation to ...Recently I published a paper in the journal ALAMT (Advances in Linear Algebra & Matrix Theory) and explored the possibility of obtaining products of vectors in dimensions higher than three [1]. In continuation to this work, it is proposed to develop, through dimensional analogy, a vector field with notation and properties analogous to the curl, in this case applied to the space IR4. One can see how the similarities are obvious in relation to the algebraic properties and the geometric structures, if the rotations are compared in spaces of three and four dimensions.展开更多
In two previous papers <a href="#ref1">[1]</a> and <a href="#ref2">[2]</a>, a structure for vector products in <em>n</em> dimensions was presented, and at the sa...In two previous papers <a href="#ref1">[1]</a> and <a href="#ref2">[2]</a>, a structure for vector products in <em>n</em> dimensions was presented, and at the same time it was possible to propose the existence of a vector analogous to the curl of a vector field, for a space of four dimensions. In continuation of these works, the objective is to develop, through dimensional analogy, the idea of a hypothetical vector field, associated with the classical electromagnetic wave. This hypothetical field has a possible mathematical existence only when considering a space of four dimensions. The properties of the electromagnetic wave are preserved and equations with mathematical forms analogous to those of Maxwell’s equations are presented.展开更多
This paper deals with a class of upper triangular infinite-dimensional Hamilto- nian operators appearing in the elasticity theory. The geometric multiplicity and algebraic index of the eigenvalue are investigated. Fur...This paper deals with a class of upper triangular infinite-dimensional Hamilto- nian operators appearing in the elasticity theory. The geometric multiplicity and algebraic index of the eigenvalue are investigated. Furthermore, the algebraic multiplicity of the eigenvalue is obtained. Based on these properties, the concrete completeness formulation of the system of eigenvectors or root vectors of the Hamiltonian operator is proposed. It is shown that the completeness is determined by the system of eigenvectors of the operator entries. Finally, the applications of the results to some problems in the elasticity theory are presented.展开更多
Our purpose in this study was to develop an automated method for measuring three-dimensional (3D) cerebral cortical thicknesses in patients with Alzheimer’s disease (AD) using magnetic resonance (MR) images. Our prop...Our purpose in this study was to develop an automated method for measuring three-dimensional (3D) cerebral cortical thicknesses in patients with Alzheimer’s disease (AD) using magnetic resonance (MR) images. Our proposed method consists of mainly three steps. First, a brain parenchymal region was segmented based on brain model matching. Second, a 3D fuzzy membership map for a cerebral cortical region was created by applying a fuzzy c-means (FCM) clustering algorithm to T1-weighted MR images. Third, cerebral cortical thickness was three- dimensionally measured on each cortical surface voxel by using a localized gradient vector trajectory in a fuzzy membership map. Spherical models with 3 mm artificial cortical regions, which were produced using three noise levels of 2%, 5%, and 10%, were employed to evaluate the proposed method. We also applied the proposed method to T1-weighted images obtained from 20 cases, i.e., 10 clinically diagnosed AD cases and 10 clinically normal (CN) subjects. The thicknesses of the 3 mm artificial cortical regions for spherical models with noise levels of 2%, 5%, and 10% were measured by the proposed method as 2.953 ± 0.342, 2.953 ± 0.342 and 2.952 ± 0.343 mm, respectively. Thus the mean thicknesses for the entire cerebral lobar region were 3.1 ± 0.4 mm for AD patients and 3.3 ± 0.4 mm for CN subjects, respectively (p < 0.05). The proposed method could be feasible for measuring the 3D cerebral cortical thickness on individual cortical surface voxels as an atrophy feature in AD.展开更多
基金supported by the Ministry of Science and Technology of China (2010DFA32680)the National Natural Science Foundation of China (21005062)the Fundamental Research Funds for the Central Universities (CDJRC10220010)
文摘Three-dimensional holographic vector of atomic interaction field(3D-HoVAIF) is used to describe the chemical structures of polychlorinated naphthalenes(PCNs).After variable screening by stepwise multiple regression(SMR) technique,the liner relationships between gas-chromatographic relative retention time(RRT),298 K supercooled liquid pressures(logPL),n-octanol/air partition coefficient(logKOA),n-octanol/water partition coefficient(logKOW),aqueous solubilities(logSW),relative in vitro potency values(-logEROD) of PCNs and 3D-HoVAIF descriptors have been established by partial least-square(PLS) regression.The result shows that the 3D-HoVAIF descriptors can be well used to express the quantitative structure-property(activity) relationships of PCNs.Predictive capability of the models has also been demonstrated by leave-one-out cross-validation.Moreover,the predicted values have been presented for those PCNs which are lack of experimentally physico-chemical properties and biological activity by the optimum models.
文摘Recently I published a paper in the journal ALAMT (Advances in Linear Algebra & Matrix Theory) and explored the possibility of obtaining products of vectors in dimensions higher than three [1]. In continuation to this work, it is proposed to develop, through dimensional analogy, a vector field with notation and properties analogous to the curl, in this case applied to the space IR4. One can see how the similarities are obvious in relation to the algebraic properties and the geometric structures, if the rotations are compared in spaces of three and four dimensions.
文摘In two previous papers <a href="#ref1">[1]</a> and <a href="#ref2">[2]</a>, a structure for vector products in <em>n</em> dimensions was presented, and at the same time it was possible to propose the existence of a vector analogous to the curl of a vector field, for a space of four dimensions. In continuation of these works, the objective is to develop, through dimensional analogy, the idea of a hypothetical vector field, associated with the classical electromagnetic wave. This hypothetical field has a possible mathematical existence only when considering a space of four dimensions. The properties of the electromagnetic wave are preserved and equations with mathematical forms analogous to those of Maxwell’s equations are presented.
基金supported by the National Natural Science Foundation of China (Nos. 11061019,10962004,11101200,and 11026175)the Chunhui Program of Ministry of Education of China (No. Z2009-1-01010)+1 种基金the Natural Science Foundation of Inner Mongolia of China (No. 2010MS0110)the Cultivation of Innovative Talent of "211 Project" of Inner Mongolia University
文摘This paper deals with a class of upper triangular infinite-dimensional Hamilto- nian operators appearing in the elasticity theory. The geometric multiplicity and algebraic index of the eigenvalue are investigated. Furthermore, the algebraic multiplicity of the eigenvalue is obtained. Based on these properties, the concrete completeness formulation of the system of eigenvectors or root vectors of the Hamiltonian operator is proposed. It is shown that the completeness is determined by the system of eigenvectors of the operator entries. Finally, the applications of the results to some problems in the elasticity theory are presented.
文摘Our purpose in this study was to develop an automated method for measuring three-dimensional (3D) cerebral cortical thicknesses in patients with Alzheimer’s disease (AD) using magnetic resonance (MR) images. Our proposed method consists of mainly three steps. First, a brain parenchymal region was segmented based on brain model matching. Second, a 3D fuzzy membership map for a cerebral cortical region was created by applying a fuzzy c-means (FCM) clustering algorithm to T1-weighted MR images. Third, cerebral cortical thickness was three- dimensionally measured on each cortical surface voxel by using a localized gradient vector trajectory in a fuzzy membership map. Spherical models with 3 mm artificial cortical regions, which were produced using three noise levels of 2%, 5%, and 10%, were employed to evaluate the proposed method. We also applied the proposed method to T1-weighted images obtained from 20 cases, i.e., 10 clinically diagnosed AD cases and 10 clinically normal (CN) subjects. The thicknesses of the 3 mm artificial cortical regions for spherical models with noise levels of 2%, 5%, and 10% were measured by the proposed method as 2.953 ± 0.342, 2.953 ± 0.342 and 2.952 ± 0.343 mm, respectively. Thus the mean thicknesses for the entire cerebral lobar region were 3.1 ± 0.4 mm for AD patients and 3.3 ± 0.4 mm for CN subjects, respectively (p < 0.05). The proposed method could be feasible for measuring the 3D cerebral cortical thickness on individual cortical surface voxels as an atrophy feature in AD.