期刊文献+
共找到768篇文章
< 1 2 39 >
每页显示 20 50 100
Fault Diagnosis for Aero-engine Applying a New Multi-class Support Vector Algorithm 被引量:4
1
作者 徐启华 师军 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2006年第3期175-182,共8页
Hierarchical Support Vector Machine (H-SVM) is faster in training and classification than other usual multi-class SVMs such as "1-V-R"and "1-V-1". In this paper, a new multi-class fault diagnosis algorithm based... Hierarchical Support Vector Machine (H-SVM) is faster in training and classification than other usual multi-class SVMs such as "1-V-R"and "1-V-1". In this paper, a new multi-class fault diagnosis algorithm based on H-SVM is proposed and applied to aero-engine. Before SVM training, the training data are first clustered according to their class-center Euclid distances in some feature spaces. The samples which have close distances are divided into the same sub-classes for training, and this makes the H-SVM have reasonable hierarchical construction and good generalization performance. Instead of the common C-SVM, the v-SVM is selected as the binary classifier, in which the parameter v varies only from 0 to 1 and can be determined more easily. The simulation results show that the designed H-SVMs can fast diagnose the multi-class single faults and combination faults for the gas path components of an aero-engine. The fault classifiers have good diagnosis accuracy and can keep robust even when the measurement inputs are disturbed by noises. 展开更多
关键词 support vector machine fault diagnosis multi-class classification
在线阅读 下载PDF
Turbopump Condition Monitoring Using Incremental Clustering and One-class Support Vector Machine 被引量:2
2
作者 HU Lei HU Niaoqing +1 位作者 QIN Guojun GU Fengshou 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2011年第3期474-479,共6页
Turbopump condition monitoring is a significant approach to ensure the safety of liquid rocket engine (LRE).Because of lack of fault samples,a monitoring system cannot be trained on all possible condition patterns.T... Turbopump condition monitoring is a significant approach to ensure the safety of liquid rocket engine (LRE).Because of lack of fault samples,a monitoring system cannot be trained on all possible condition patterns.Thus it is important to differentiate abnormal or unknown patterns from normal pattern with novelty detection methods.One-class support vector machine (OCSVM) that has been commonly used for novelty detection cannot deal well with large scale samples.In order to model the normal pattern of the turbopump with OCSVM and so as to monitor the condition of the turbopump,a monitoring method that integrates OCSVM with incremental clustering is presented.In this method,the incremental clustering is used for sample reduction by extracting representative vectors from a large training set.The representative vectors are supposed to distribute uniformly in the object region and fulfill the region.And training OCSVM on these representative vectors yields a novelty detector.By applying this method to the analysis of the turbopump's historical test data,it shows that the incremental clustering algorithm can extract 91 representative points from more than 36 000 training vectors,and the OCSVM detector trained on these 91 representative points can recognize spikes in vibration signals caused by different abnormal events such as vane shedding,rub-impact and sensor faults.This monitoring method does not need fault samples during training as classical recognition methods.The method resolves the learning problem of large samples and is an alternative method for condition monitoring of the LRE turbopump. 展开更多
关键词 novelty detection condition monitoring incremental clustering one-class support vector machine TURBOPUMP
在线阅读 下载PDF
Prediction of Protein Structural Classes Using the Theory of Increment of Diversity and Support Vector Machine 被引量:1
3
作者 WANG Fangping WANG Zhijian +1 位作者 LI Hong YANG Keli 《Wuhan University Journal of Natural Sciences》 CAS 2011年第3期260-264,共5页
Based on the concept of the pseudo amino acid composition (PseAAC), protein structural classes are predicted by using an approach of increment of diversity combined with support vector machine (ID-SVM), in which t... Based on the concept of the pseudo amino acid composition (PseAAC), protein structural classes are predicted by using an approach of increment of diversity combined with support vector machine (ID-SVM), in which the dipeptide amino acid composition of proteins is used as the source of diversity. Jackknife test shows that total prediction accuracy is 96.6% and higher than that given by other approaches. Besides, the specificity (Sp) and the Matthew's correlation coefficient (MCC) are also calculated for each protein structural class, the Sp is more than 88%, the MCC is higher than 92%, and the higher MCC and Sp imply that it is credible to use ID-SVM model predicting protein structural class. The results indicate that: 1 the choice of the source of diversity is reasonable, 2 the predictive performance of IDSVM is excellent, and3 the amino acid sequences of proteins contain information of protein structural classes. 展开更多
关键词 dipeptide amino acid composition increment of diversity support vector machines protein structure classes
原文传递
Multi-class classification method for strip steel surface defects based on support vector machine with adjustable hyper-sphere 被引量:2
4
作者 Mao-xiang Chu Xiao-ping Liu +1 位作者 Rong-fen Gong Jie Zhao 《Journal of Iron and Steel Research International》 SCIE EI CAS CSCD 2018年第7期706-716,共11页
Focusing on strip steel surface defects classification, a novel support vector machine with adjustable hyper-sphere (AHSVM) is formulated. Meanwhile, a new multi-class classification method is proposed. Originated f... Focusing on strip steel surface defects classification, a novel support vector machine with adjustable hyper-sphere (AHSVM) is formulated. Meanwhile, a new multi-class classification method is proposed. Originated from support vector data description, AHSVM adopts hyper-sphere to solve classification problem. AHSVM can obey two principles: the margin maximization and inner-class dispersion minimization. Moreover, the hyper-sphere of AHSVM is adjustable, which makes the final classification hyper-sphere optimal for training dataset. On the other hand, AHSVM is combined with binary tree to solve multi-class classification for steel surface defects. A scheme of samples pruning in mapped feature space is provided, which can reduce the number of training samples under the premise of classification accuracy, resulting in the improvements of classification speed. Finally, some testing experiments are done for eight types of strip steel surface defects. Experimental results show that multi-class AHSVM classifier exhibits satisfactory results in classification accuracy and efficiency. 展开更多
关键词 Strip steel surface defect Multi-class classification Supporting vector machine Adjustable hyper-sphere
原文传递
Multi-Class Support Vector Machine Classifier Based on Jeffries-Matusita Distance and Directed Acyclic Graph 被引量:1
5
作者 Miao Zhang Zhen-Zhou Lai +1 位作者 Dan Li Yi Shen 《Journal of Harbin Institute of Technology(New Series)》 EI CAS 2013年第5期113-118,共6页
Based on the framework of support vector machines (SVM) using one-against-one (OAO) strategy, a new multi-class kernel method based on directed aeyclie graph (DAG) and probabilistic distance is proposed to raise... Based on the framework of support vector machines (SVM) using one-against-one (OAO) strategy, a new multi-class kernel method based on directed aeyclie graph (DAG) and probabilistic distance is proposed to raise the multi-class classification accuracies. The topology structure of DAG is constructed by rearranging the nodes' sequence in the graph. DAG is equivalent to guided operating SVM on a list, and the classification performance depends on the nodes' sequence in the graph. Jeffries-Matusita distance (JMD) is introduced to estimate the separability of each class, and the implementation list is initialized with all classes organized according to certain sequence in the list. To testify the effectiveness of the proposed method, numerical analysis is conducted on UCI data and hyperspectral data. Meanwhile, comparative studies using standard OAO and DAG classification methods are also conducted and the results illustrate better performance and higher accuracy of the orooosed JMD-DAG method. 展开更多
关键词 multi-class classification support vector machine directed acyclic graph Jeffries-Matusitadistance hyperspcctral data
在线阅读 下载PDF
COMPOSITION OPERATORS ON ANALYTIC VECTOR-VALUED NEVANLINNA CLASSES
6
作者 王茂发 《Acta Mathematica Scientia》 SCIE CSCD 2005年第4期771-780,共10页
Let φ be an analytic self-map of the complex unit disk and X a Banach space. This paper studies the action of composition operator Cφ: f→foφ on the vector-valued Nevanlinna classes N(X) and Na(X). Certain cri... Let φ be an analytic self-map of the complex unit disk and X a Banach space. This paper studies the action of composition operator Cφ: f→foφ on the vector-valued Nevanlinna classes N(X) and Na(X). Certain criteria for such operators to be weakly compact are given. As a consequence, this paper shows that the composition operator Cφ is weakly compact on N(X) and Na(X) if and only if it is weakly compact on the vector-valued Hardy space H^1 (X) and Bergman space B1(X) respectively. 展开更多
关键词 Composition operator BOUNDEDNESS weak compactness Carleson measure vector-valued Nevanlinna class
在线阅读 下载PDF
粗糙one-class支持向量机 被引量:2
7
作者 王磊 杨一帆 周启海 《计算机科学》 CSCD 北大核心 2009年第9期242-245,共4页
粗糙集理论是处理不确定性和不完备信息的重要方法之一。通过将粗糙集理论引入到one-class支持向量机,提出了一种新颖的粗糙one-class支持向量机。通过定义上近似超平面和下近似超平面,使得训练样本能根据在粗糙间隔中的位置,自适应地... 粗糙集理论是处理不确定性和不完备信息的重要方法之一。通过将粗糙集理论引入到one-class支持向量机,提出了一种新颖的粗糙one-class支持向量机。通过定义上近似超平面和下近似超平面,使得训练样本能根据在粗糙间隔中的位置,自适应地对决策超平面产生影响。并且,outlier样本由于距离上近似超平面较近并产生较小的间隔误差,不会导致决策超平面对它们产生明显的过拟合。实验结果表明,粗糙one-class支持向量机的泛化性能优异,识别率和误识率均优于传统的one-class支持向量机。 展开更多
关键词 粗糙集 ONE-class 支持向量机
在线阅读 下载PDF
基于Vector类向量运算的碰撞侦测研究 被引量:2
8
作者 杨先卫 《三峡大学学报(自然科学版)》 CAS 2006年第4期377-380,共4页
通过Vector类封装的与向量运算相关的成员函数和操作符,对顶点对顶点、顶点对边、顶点对面和边对边这4种接触类型的碰撞侦测进行了探讨和研究,并提供了求解碰撞对象的最小距离、碰撞法向量、相对法线速度以及判断碰撞接触类型的方法和... 通过Vector类封装的与向量运算相关的成员函数和操作符,对顶点对顶点、顶点对边、顶点对面和边对边这4种接触类型的碰撞侦测进行了探讨和研究,并提供了求解碰撞对象的最小距离、碰撞法向量、相对法线速度以及判断碰撞接触类型的方法和程序代码. 展开更多
关键词 vector类向量 碰撞侦测 接触类型 碰撞法向量
在线阅读 下载PDF
融合自编码器和one-class SVM的异常事件检测 被引量:15
9
作者 胡海洋 张力 李忠金 《中国图象图形学报》 CSCD 北大核心 2020年第12期2614-2629,共16页
目的在自动化和智能化的现代生产制造过程中,视频异常事件检测技术扮演着越来越重要的角色,但由于实际生产制造中异常事件的复杂性及无关生产背景的干扰,使其成为一项非常具有挑战性的任务。很多传统方法采用手工设计的低级特征对视频... 目的在自动化和智能化的现代生产制造过程中,视频异常事件检测技术扮演着越来越重要的角色,但由于实际生产制造中异常事件的复杂性及无关生产背景的干扰,使其成为一项非常具有挑战性的任务。很多传统方法采用手工设计的低级特征对视频的局部区域进行特征提取,然而此特征很难同时表示运动与外观特征。此外,一些基于深度学习的视频异常事件检测方法直接通过自编码器的重构误差大小来判定测试样本是否为正常或异常事件,然而实际情况往往会出现一些原本为异常的测试样本经过自编码得到的重构误差也小于设定阈值,从而将其错误地判定为正常事件,出现异常事件漏检的情形。针对此不足,本文提出一种融合自编码器和one-class支持向量机(support vector machine,SVM)的异常事件检测模型。方法通过高斯混合模型(Gaussian mixture model,GMM)提取固定大小的时空兴趣块(region of interest,ROI);通过预训练的3维卷积神经网络(3D convolutional neural network,C3D)对ROI进行高层次的特征提取;利用提取的高维特征训练一个堆叠的降噪自编码器,通过比较重构误差与设定阈值的大小,将测试样本判定为正常、异常和可疑3种情况之一;对自编码器降维后的特征训练一个one-class SVM模型,用于对可疑测试样本进行二次检测,进一步排除异常事件。结果本文对实际生产制造环境下的机器人工作场景进行实验,采用AUC(area under ROC)和等错误率(equal error rate,EER)两个常用指标进行评估。在设定合适的误差阈值时,结果显示受试者工作特征(receiver operating characteristic,ROC)曲线下AUC达到91.7%,EER为13.8%。同时,在公共数据特征集USCD(University of California,San Diego)Ped1和USCD Ped2上进行了模型评估,并与一些常用方法进行了比较,在USCD Ped1数据集中,相比于性能第2的方法,AUC在帧级别和像素级别分别提高了2.6%和22.3%;在USCD Ped2数据集中,相比于性能第2的方法,AUC在帧级别提高了6.7%,从而验证了所提检测方法的有效性与准确性。结论本文提出的视频异常事件检测模型,结合了传统模型与深度学习模型,使视频异常事件检测结果更加准确。 展开更多
关键词 视频异常事件检测 时空兴趣块 3维卷积神经网络 降噪自编码器 one-class支持向量机
原文传递
基于one-class SVM与融合多可视化特征的可通行区域检测 被引量:2
10
作者 高华 赵春霞 韩光 《机器人》 EI CSCD 北大核心 2011年第6期731-735,741,共6页
针对难以获取完备的非可通行区域样本问题,为提高算法在不同场景的适应性,首次把可通行性检测看作单类分类问题,提出了基于one-class SVM的可通行区域检测算法.提出一种改进的融合颜色和纹理的特征提取方法,对各颜色分量进行离散余弦变... 针对难以获取完备的非可通行区域样本问题,为提高算法在不同场景的适应性,首次把可通行性检测看作单类分类问题,提出了基于one-class SVM的可通行区域检测算法.提出一种改进的融合颜色和纹理的特征提取方法,对各颜色分量进行离散余弦变换(DCT)变换,对DCT系数进行金字塔分解,用每个分解的均值和方差描述特征窗口.利用one-class SVM进行训练生成可通行区域的模式.实验表明,方法对新数据具有很好的识别能力,具有较高的检测精度和较低的误检率. 展开更多
关键词 可通行区域检测 ONE-class SVM 多可视化特征 自主导航
在线阅读 下载PDF
利用i-vectors构建区分性话者模型的话者确认 被引量:3
11
作者 方昕 李辉 刘青松 《小型微型计算机系统》 CSCD 北大核心 2014年第3期685-688,共4页
对于电话手机语音的文本无关话者确认,运用联合因子分析构建话者信息子空间与信道信息子空间来进行失配信道补偿取得了较好的效果.然而研究表明,信道信息子空间仍然包含了可以用来区分话者的信息.因此,本文运用一种既包含话者信息又包... 对于电话手机语音的文本无关话者确认,运用联合因子分析构建话者信息子空间与信道信息子空间来进行失配信道补偿取得了较好的效果.然而研究表明,信道信息子空间仍然包含了可以用来区分话者的信息.因此,本文运用一种既包含话者信息又包含信道信息的全变量信息子空间来提取i-vectors低维特征矢量,再运用类内协方差规整进行失配信道补偿,最后用补偿后的i-vectors特征矢量构建支持向量机话者模型.在NIST08数据库上实验表明,本文所构建系统的性能在等误识率和最小检测代价函数上有相对近70%的提高. 展开更多
关键词 话者确认 全变量信息子空间 类内协方差规整 支持向量机 i—vectors
在线阅读 下载PDF
一种新的中文文本分类算法——One Class SVM-KNN算法 被引量:4
12
作者 刘文 吴陈 《计算机技术与发展》 2012年第5期83-86,共4页
中文文本分类在数据库及搜索引擎中得到广泛的应用,K-近邻(KNN)算法是常用于中文文本分类中的分类方法,但K-近邻在分类过程中需要存储所有的训练样本,并且直到待测样本需要分类时才建立分类,而且还存在类倾斜现象以及存储和计算的开销... 中文文本分类在数据库及搜索引擎中得到广泛的应用,K-近邻(KNN)算法是常用于中文文本分类中的分类方法,但K-近邻在分类过程中需要存储所有的训练样本,并且直到待测样本需要分类时才建立分类,而且还存在类倾斜现象以及存储和计算的开销大等缺陷。单类SVM对只有一类的分类问题具有很好的效果,但不适用于多类分类问题,因此针对KNN存在的缺陷及单类SVM的特点提出One Class SVM-KNN算法,并给出了算法的定义及详细分析。通过实验证明此方法很好地克服了KNN算法的缺陷,并且查全率、查准率明显优于K-近邻算法。 展开更多
关键词 中文文本分类 支持向量机 K-近邻 ONE class SVM—KNN
在线阅读 下载PDF
一种基于One-Class SVM和GP安全事件关联规则生成方法研究 被引量:7
13
作者 杜栋栋 任星彰 +3 位作者 陈坤 叶蔚 赵文 张世琨 《电子学报》 EI CAS CSCD 北大核心 2018年第8期1793-1803,共11页
随着信息技术的快速发展,网络安全威胁造成的危害日愈严重.安全信息和事件管理(SIEM)在查找组织内部威胁,可疑行为及其它高级持续攻击(APT)中发挥了重要作用.SIEM的检测能力主要依赖于准确,可靠的关联规则.然而,传统的规则生成方式主要... 随着信息技术的快速发展,网络安全威胁造成的危害日愈严重.安全信息和事件管理(SIEM)在查找组织内部威胁,可疑行为及其它高级持续攻击(APT)中发挥了重要作用.SIEM的检测能力主要依赖于准确,可靠的关联规则.然而,传统的规则生成方式主要基于专家知识人工编写检测规则,因此成本高,效率低.本文给出了一种具备自适应能力的规则生成框架来自动生成关联规则.首先为了更好地识别未知攻击,提出一种基于单类支持向量机(OneClass SVM)的安全事件分类算法对安全事件进行有效分类,实验分类效果准确率高达97%.其次为了提高规则生成准确率,通过重新定义个体结构,交叉与变异方式,优化了基于遗传编程(GP)的规则生成算法,规则适应度高达94%.实验结果表明,本文提出的框架具备自适应能力来识别未知攻击,具备较高的检测准确率,可有效减少人工参与.同时该框架已经部署在实际生产环境中,和原系统相比可以检测更多攻击类型. 展开更多
关键词 安全事件 关联规则生成 日志管理 安全信息和事件管理(SIEM) 单类支持向量机 遗传编程
在线阅读 下载PDF
基于Multi-class SVM的车辆换道行为识别模型研究 被引量:19
14
作者 陈亮 冯延超 李巧茹 《安全与环境学报》 CAS CSCD 北大核心 2020年第1期193-199,共7页
自动安全换道是车辆实现无人驾驶的关键,为精确识别行驶车辆换道状态,保证行车安全,设计了一种基于多分类支持向量机(Multi-class Support Vector Machine,Multiclass SVM)的车辆换道识别模型。从NGSIM数据集中选取美国101公路车辆轨迹... 自动安全换道是车辆实现无人驾驶的关键,为精确识别行驶车辆换道状态,保证行车安全,设计了一种基于多分类支持向量机(Multi-class Support Vector Machine,Multiclass SVM)的车辆换道识别模型。从NGSIM数据集中选取美国101公路车辆轨迹数据进行分类处理,并将车辆换道过程划分为车辆跟驰阶段、车辆换道准备阶段和车辆换道执行阶段。采用网格搜索结合粒子群优化算法(Grid Search-PSO)对SVM模型中惩罚参数C和核参数g进行寻优标定,利用多分类支持向量机换道识别模型对样本数据进行训练和测试,模型测试精度达97.68%。研究表明,模型能够很好地识别车辆在换道过程中的行为状态,为车辆换道阶段的研究提供支持。 展开更多
关键词 安全工程 多分类支持向量机 NGSIM数据 车辆换道识别
原文传递
Support vector machine-based multi-model predictive control 被引量:3
15
作者 Zhejing BAO Youxian SUN 《控制理论与应用(英文版)》 EI 2008年第3期305-310,共6页
In this paper, a support vector machine-based multi-model predictive control is proposed, in which SVM classification combines well with SVM regression. At first, each working environment is modeled by SVM regression ... In this paper, a support vector machine-based multi-model predictive control is proposed, in which SVM classification combines well with SVM regression. At first, each working environment is modeled by SVM regression and the support vector machine network-based model predictive control (SVMN-MPC) algorithm corresponding to each environment is developed, and then a multi-class SVM model is established to recognize multiple operating conditions. As for control, the current environment is identified by the multi-class SVM model and then the corresponding SVMN-MPC controller is activated at each sampling instant. The proposed modeling, switching and controller design is demonstrated in simulation results. 展开更多
关键词 Multi-model predictive control Support vector machine network Multi-class support vector machine Multi-model switching
在线阅读 下载PDF
基于One-class SVM的噪声图像分割方法 被引量:6
16
作者 尚方信 郭浩 +1 位作者 李钢 张玲 《计算机应用》 CSCD 北大核心 2019年第3期874-881,共8页
为解决现有无监督图像分割模型对强噪声环境鲁棒性差、无法适应复杂混合噪声的问题,提出了一种基于One-class SVM方法的改进后的噪声鲁棒图像分割模型。首先,基于One-class SVM构建一种数据离群程度检测机制;然后,将离群程度值引入能量... 为解决现有无监督图像分割模型对强噪声环境鲁棒性差、无法适应复杂混合噪声的问题,提出了一种基于One-class SVM方法的改进后的噪声鲁棒图像分割模型。首先,基于One-class SVM构建一种数据离群程度检测机制;然后,将离群程度值引入能量泛函,令分割模型可以在多种噪声强度下获得较为准确的图像信息,同时避免现有方法在强噪声环境下,降权机制失效的问题;最后,通过最小化能量函数,驱动分割轮廓向目标边缘演化。在噪声图像分割实验中,当选取不同类型和强度的噪声时,该模型均能得到较为理想的分割结果。在F_1-score评估标准下,该模型比基于局部相关熵的K-means(LCK)模型高0.2~0.3,在强噪声环境下具有更高的稳定性,且在分割收敛时间上仅略大于LCK模型0.1 s左右。实验结果表明,所提模型在未显著增加分割耗时的前提下,对于概率、极值及混合噪声均有着更强的鲁棒性,并且可以分割带有噪声的自然图像。 展开更多
关键词 图像分割 图像噪声 单类支持向量机 离群检测 能量项
在线阅读 下载PDF
基于One-class SVM的自相关线性轮廓监控研究
17
作者 薛丽 贾元忠 曹逗逗 《郑州航空工业管理学院学报》 2022年第1期89-98,共10页
在复杂产品的制造过程中,轮廓(profile)数据是一类广泛存在的质量数据类型。为了能够尽快监测出线性轮廓内自相关过程中的异常,针对质量数据仅存在正常样本的情况,提出了基于一类支持向量机(one-class Support Vector Machine,OCSVM)的... 在复杂产品的制造过程中,轮廓(profile)数据是一类广泛存在的质量数据类型。为了能够尽快监测出线性轮廓内自相关过程中的异常,针对质量数据仅存在正常样本的情况,提出了基于一类支持向量机(one-class Support Vector Machine,OCSVM)的监控方法。首先,介绍OCSVM方法原理;其次,构建OCSVM监控模型,通过数值仿真实验模拟得到平均运行长度,并给出详细的仿真过程;再次,以平均运行长度为准则,分析高斯核函数与多项式核函数对OCSVM方法监控性能的影响,结果表明:监控AR(1)模型时,多项式核函数具有优势;最后,将多项式核函数的仿真结果与传统的一些控制图进行对比,结果表明:当标准差以及斜率、截距同时发生变化时,OCSVM方法监控效果优于其他控制图;当自相关系数ρ=0.1(弱相关)截距发生较大偏移以及ρ=0.9(强相关)截距发生偏移时,OCSVM方法监控效果优于其他控制图。 展开更多
关键词 线性轮廓 一类支持向量机 自相关过程 平均运行长度
在线阅读 下载PDF
Least Squares One-Class Support Tensor Machine
18
作者 Kaiwen Zhao Yali Fan 《Journal of Computer and Communications》 2024年第4期186-200,共15页
One-class classification problem has become a popular problem in many fields, with a wide range of applications in anomaly detection, fault diagnosis, and face recognition. We investigate the one-class classification ... One-class classification problem has become a popular problem in many fields, with a wide range of applications in anomaly detection, fault diagnosis, and face recognition. We investigate the one-class classification problem for second-order tensor data. Traditional vector-based one-class classification methods such as one-class support vector machine (OCSVM) and least squares one-class support vector machine (LSOCSVM) have limitations when tensor is used as input data, so we propose a new tensor one-class classification method, LSOCSTM, which directly uses tensor as input data. On one hand, using tensor as input data not only enables to classify tensor data, but also for vector data, classifying it after high dimensionalizing it into tensor still improves the classification accuracy and overcomes the over-fitting problem. On the other hand, different from one-class support tensor machine (OCSTM), we use squared loss instead of the original loss function so that we solve a series of linear equations instead of quadratic programming problems. Therefore, we use the distance to the hyperplane as a metric for classification, and the proposed method is more accurate and faster compared to existing methods. The experimental results show the high efficiency of the proposed method compared with several state-of-the-art methods. 展开更多
关键词 Least Square One-class Support Tensor Machine One-class classification Upscale Least Square One-class Support vector Machine One-class Support Tensor Machine
在线阅读 下载PDF
Multi-class Classification Methods of Enhanced LS-TWSVM for Strip Steel Surface Defects 被引量:4
19
作者 Mao-xiang CHU An-na WANG +1 位作者 Rong-fen GONG Mo SHA 《Journal of Iron and Steel Research International》 SCIE EI CAS CSCD 2014年第2期174-180,共7页
Considering strip steel surface defect samples, a multi-class classification method was proposed based on enhanced least squares twin support vector machines (ELS-TWSVMs) and binary tree. Firstly, pruning region sam... Considering strip steel surface defect samples, a multi-class classification method was proposed based on enhanced least squares twin support vector machines (ELS-TWSVMs) and binary tree. Firstly, pruning region samples center method with adjustable pruning scale was used to prune data samples. This method could reduce classifierr s training time and testing time. Secondly, ELS-TWSVM was proposed to classify the data samples. By introducing error variable contribution parameter and weight parameter, ELS-TWSVM could restrain the impact of noise sam- ples and have better classification accuracy. Finally, multi-class classification algorithms of ELS-TWSVM were pro- posed by combining ELS-TWSVM and complete binary tree. Some experiments were made on two-dimensional data- sets and strip steel surface defect datasets. The experiments showed that the multi-class classification methods of ELS-TWSVM had higher classification speed and accuracy for the datasets with large-scale, unbalanced and noise samples. 展开更多
关键词 multi-class classification least squares twin support vector machine error variable contribution WEIGHT binary tree strip steel surface
原文传递
基于高光谱成像的烟火药快速可视化识别方法
20
作者 李云鹏 王宏炜 +3 位作者 代雪晶 武连全 胡伟成 张彦春 《光谱学与光谱分析》 北大核心 2025年第8期2183-2189,共7页
涉爆现场勘查工作中,烟火药的快速探测和准确识别对重大突发爆炸案件的防控与快速处置起着至关重要的作用,而当前对烟火药等爆炸物进行现场快速检测方法大多存在识别速度低、可视化困难等问题。鉴于此,提出一种基于高光谱成像技术结合... 涉爆现场勘查工作中,烟火药的快速探测和准确识别对重大突发爆炸案件的防控与快速处置起着至关重要的作用,而当前对烟火药等爆炸物进行现场快速检测方法大多存在识别速度低、可视化困难等问题。鉴于此,提出一种基于高光谱成像技术结合单类支持向量机(OCSVM)快速发现与识别烟火药的方法。首先,使用高光谱相机采集检材400~720 nm波段的高光谱数据,运用主成分分析(PCA)对数据进行降维,通过乘性散射校正(MSC)消除样本表面颗粒散射引起的基线偏移,使用Savitzky-Golay(SG)平滑抑制高频噪声,提升光谱信噪比。其次,为减少模型复杂度提高效率,通过Kennnard-Stone(K-S)方法从光谱数据中选取代表性的烟火药样本作为数据集,以4∶1的比例将其划分为训练集和测试集,在此基础上建立OCSVM模型。再次,为验证模型对烟火药的识别能力,使用相同的训练集建立孤立森林(iForest)、自编码器(AE)模型,对比三种模型对烟火药的识别能力。最后,将识别结果映射到检材的RGB图像中,采取掩膜操作标记目标类像素得到识别图像,实现烟火药的可视化识别效果。结果表明,OCSVM方法对多种检材识别的总体精度高于0.95、F1得分和AUC值超过0.8、识别时间低于2 s,OCSVM在分类准确率、运行速度、F1得分和曲线下面积(AUC)等指标上的表现均优于孤立森林模型和自编码器模型。在可视化识别方面,经过映射和掩膜操作后得到基于OCSVM模型的识别图像可以较为准确的反映出烟火药在所有检材中的分布情况,而基于孤立森林和自编码器模型的识别图像未能很好的反映烟火药在黄色纸和黑色涤纶布料上的分布。研究表明,本文提出的基于高光谱成像结合OCSVM的烟火药识别方法具有识别准确率高、反应速度快、泛化能力强的特点,能够快速、准确、无损地识别检材中的烟火药。其识别精度、识别速度以及可视化效果可很好的适用于涉爆现场烟火药的快速发现与临场检测,为现场勘查中烟火药的搜寻提供一种有效方法。 展开更多
关键词 高光谱成像技术 单类支持向量机 烟火药 可视化识别
在线阅读 下载PDF
上一页 1 2 39 下一页 到第
使用帮助 返回顶部