Nowadays,wireless communication devices turn out to be transportable owing to the execution of the current technologies.The antenna is the most important component deployed for communication purposes.The antenna plays...Nowadays,wireless communication devices turn out to be transportable owing to the execution of the current technologies.The antenna is the most important component deployed for communication purposes.The antenna plays an imperative role in receiving and transmitting the signals for any sensor network.Among varied antennas,micro strip fractal antenna(MFA)significantly contributes to increasing antenna gain.This study employs a hybrid optimization method known as the elephant clan updated grey wolf algorithm to introduce an optimized MFA design.This method optimizes antenna characteristics,including directivity and gain.Here,the factors,including length,width,ground plane length,height,and feed offset-X and feed offset-Y,are taken into account to achieve the best performance of gain and directivity.Ultimately,the superiority of the suggested technique over state-of-the-art strategies is calculated for various metrics such as cost and gain.The adopted model converges to a minimal value of 0.2872.Further,the spider monkey optimization(SMO)model accomplishes the worst performance over all other existing models like elephant herding optimization(EHO),grey wolf optimization(GWO),lion algorithm(LA),support vector regressor(SVR),bacterial foraging-particle swarm optimization(BF-PSO)and shark smell optimization(SSO).Effective MFA design is obtained using the suggested strategy regarding various parameters.展开更多
Hydrates always are considered as a threat to petroleum industry due to the operational problems it can cause.These problems could result in reducing production performance or even production stoppage for a long time....Hydrates always are considered as a threat to petroleum industry due to the operational problems it can cause.These problems could result in reducing production performance or even production stoppage for a long time.In this paper, we were intended to develop a LSSVM algorithm for prognosticating hydrate formation temperature(HFT) in a wide range of natural gas mixtures. A total number of 279 experimental data points were extracted from open literature to develop the LSSVM. The input parameters were chosen based on the hydrate structure that each gas species form. The modeling resulted in a robust algorithm with the squared correlation coefficients(R^2) of 0.9918. Aside from the excellent statistical parameters of the model, comparing proposed LSSVM with some of conventional correlations showed its supremacy, particularly in the case of sour gases with high H_2S concentrations, where the model surpasses all correlations and existing thermodynamic models. For detection of the probable doubtful experimental data, and applicability of the model, the Leverage statistical approach was performed on the data sets. This algorithm showed that the proposed LSSVM model is statistically valid for HFT prediction and almost all the data points are in the applicability domain of the model.展开更多
We present two kinds of exact vector-soliton solutions for coupled nonlinear Schrodinger equations with time- varying interactions and time-varying harmonic potential. Using the variational approach, we investigate th...We present two kinds of exact vector-soliton solutions for coupled nonlinear Schrodinger equations with time- varying interactions and time-varying harmonic potential. Using the variational approach, we investigate the dynamics of the vector solitons. It is found that the two bright sol/tons oscillate about slightly and pass through each other around the equilibration state which means that they are stable under our modeh At the same time, we obtain the opposite situation for dark-dark solitons.展开更多
We investigate the incoherent beams with two orthogonal polarizations in nonlocal nonlinear media, one of which is a fundamental Gaussian beam and the other is spiraling elliptic Hermite–Gaussian beam carrying the or...We investigate the incoherent beams with two orthogonal polarizations in nonlocal nonlinear media, one of which is a fundamental Gaussian beam and the other is spiraling elliptic Hermite–Gaussian beam carrying the orbital angular momentum(OAM).Using the variational approach, we obtain the critical power and the critical OAM required for the vector spiraling elliptic Hermite–Gaussian solitons.In the strong nonlocality region, two components of the vector beam contribute to the nonlinear refractive index in a linear manner by the sum of their respective power.The nonlinear refractive index exhibits a circularly symmetrical profile in despite of the elliptic shapes for spiraling Hermite–Gaussian beams.We find that in the strong nonlocality region, the critical power and the rotational velocity are the same regardless of the relative ratio of the constituent powers.The nonlinear refractive index loses its circular symmetry in weak nonlocality region, and the nonlinear coupling effect is observed.Due to the radiation of the OAM, the damping of the rotation is predicted, and can be suppressed by decreasing the proportion of the spiraling elliptic component of the vector beam.展开更多
It is pointed out that the damping matrix deduced by active members in the finite element vibration equation of a truss adaptive structure generally can not be decoupled, which leads to the difficulty in the process o...It is pointed out that the damping matrix deduced by active members in the finite element vibration equation of a truss adaptive structure generally can not be decoupled, which leads to the difficulty in the process of modal analysis by classical superposition method. This paper focuses on the computational method of the dynamic response for truss adaptive structures. Firstly, a new technique of state vector approach is applied to study the dynamic response of truss adaptive structures. It can make the coeffic lent matrix of first derivative of state vector a symmetric positive definite matrix, and particularly a diagonal matrix provided that mass matrix is derived by lumped method, so the coefficient matrix of the first derivative of state vector can be exactly decomposed by CHOLESKY method. In this case, the proposed technique not only improves the calculation accuracy, but also saves the computing time. Based on the procedure mentioned above, the mathematical formulation for the system response of truss adaptive structures is systematically derived in theory. Thirdly, by using FORTRAN language, a program system for computing dynamic response of truss adaptive structures is developed. Fourthly, a typical 18 bar space truss adaptive structure has been chosen as test numerical examples to show the feasibility and effectiveness of the proposed method. Finally, some good suggestions, such as how to choose complex mode shapes practically in determining the dynamic response are also given. The new approach can be extended to calculate the dynamic response of general adaptive structures.展开更多
文摘Nowadays,wireless communication devices turn out to be transportable owing to the execution of the current technologies.The antenna is the most important component deployed for communication purposes.The antenna plays an imperative role in receiving and transmitting the signals for any sensor network.Among varied antennas,micro strip fractal antenna(MFA)significantly contributes to increasing antenna gain.This study employs a hybrid optimization method known as the elephant clan updated grey wolf algorithm to introduce an optimized MFA design.This method optimizes antenna characteristics,including directivity and gain.Here,the factors,including length,width,ground plane length,height,and feed offset-X and feed offset-Y,are taken into account to achieve the best performance of gain and directivity.Ultimately,the superiority of the suggested technique over state-of-the-art strategies is calculated for various metrics such as cost and gain.The adopted model converges to a minimal value of 0.2872.Further,the spider monkey optimization(SMO)model accomplishes the worst performance over all other existing models like elephant herding optimization(EHO),grey wolf optimization(GWO),lion algorithm(LA),support vector regressor(SVR),bacterial foraging-particle swarm optimization(BF-PSO)and shark smell optimization(SSO).Effective MFA design is obtained using the suggested strategy regarding various parameters.
文摘Hydrates always are considered as a threat to petroleum industry due to the operational problems it can cause.These problems could result in reducing production performance or even production stoppage for a long time.In this paper, we were intended to develop a LSSVM algorithm for prognosticating hydrate formation temperature(HFT) in a wide range of natural gas mixtures. A total number of 279 experimental data points were extracted from open literature to develop the LSSVM. The input parameters were chosen based on the hydrate structure that each gas species form. The modeling resulted in a robust algorithm with the squared correlation coefficients(R^2) of 0.9918. Aside from the excellent statistical parameters of the model, comparing proposed LSSVM with some of conventional correlations showed its supremacy, particularly in the case of sour gases with high H_2S concentrations, where the model surpasses all correlations and existing thermodynamic models. For detection of the probable doubtful experimental data, and applicability of the model, the Leverage statistical approach was performed on the data sets. This algorithm showed that the proposed LSSVM model is statistically valid for HFT prediction and almost all the data points are in the applicability domain of the model.
基金Projects supported by the National Natural Science Foundation of China (Grant Nos. 10775049 and 10375022)
文摘We present two kinds of exact vector-soliton solutions for coupled nonlinear Schrodinger equations with time- varying interactions and time-varying harmonic potential. Using the variational approach, we investigate the dynamics of the vector solitons. It is found that the two bright sol/tons oscillate about slightly and pass through each other around the equilibration state which means that they are stable under our modeh At the same time, we obtain the opposite situation for dark-dark solitons.
基金Project supported by the National Natural Science Foundation of China(Grant No.11604199)the China Scholarship Council(Grant No.201708410236)
文摘We investigate the incoherent beams with two orthogonal polarizations in nonlocal nonlinear media, one of which is a fundamental Gaussian beam and the other is spiraling elliptic Hermite–Gaussian beam carrying the orbital angular momentum(OAM).Using the variational approach, we obtain the critical power and the critical OAM required for the vector spiraling elliptic Hermite–Gaussian solitons.In the strong nonlocality region, two components of the vector beam contribute to the nonlinear refractive index in a linear manner by the sum of their respective power.The nonlinear refractive index exhibits a circularly symmetrical profile in despite of the elliptic shapes for spiraling Hermite–Gaussian beams.We find that in the strong nonlocality region, the critical power and the rotational velocity are the same regardless of the relative ratio of the constituent powers.The nonlinear refractive index loses its circular symmetry in weak nonlocality region, and the nonlinear coupling effect is observed.Due to the radiation of the OAM, the damping of the rotation is predicted, and can be suppressed by decreasing the proportion of the spiraling elliptic component of the vector beam.
基金supported by National Natural Science Foundation of China (Grant No. 10472007)
文摘It is pointed out that the damping matrix deduced by active members in the finite element vibration equation of a truss adaptive structure generally can not be decoupled, which leads to the difficulty in the process of modal analysis by classical superposition method. This paper focuses on the computational method of the dynamic response for truss adaptive structures. Firstly, a new technique of state vector approach is applied to study the dynamic response of truss adaptive structures. It can make the coeffic lent matrix of first derivative of state vector a symmetric positive definite matrix, and particularly a diagonal matrix provided that mass matrix is derived by lumped method, so the coefficient matrix of the first derivative of state vector can be exactly decomposed by CHOLESKY method. In this case, the proposed technique not only improves the calculation accuracy, but also saves the computing time. Based on the procedure mentioned above, the mathematical formulation for the system response of truss adaptive structures is systematically derived in theory. Thirdly, by using FORTRAN language, a program system for computing dynamic response of truss adaptive structures is developed. Fourthly, a typical 18 bar space truss adaptive structure has been chosen as test numerical examples to show the feasibility and effectiveness of the proposed method. Finally, some good suggestions, such as how to choose complex mode shapes practically in determining the dynamic response are also given. The new approach can be extended to calculate the dynamic response of general adaptive structures.