期刊文献+
共找到1,041篇文章
< 1 2 53 >
每页显示 20 50 100
AMicroseismic Signal Denoising Algorithm Combining VMD and Wavelet Threshold Denoising Optimized by BWOA
1
作者 Dijun Rao Min Huang +2 位作者 Xiuzhi Shi Zhi Yu Zhengxiang He 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第10期187-217,共31页
The denoising of microseismic signals is a prerequisite for subsequent analysis and research.In this research,a new microseismic signal denoising algorithm called the Black Widow Optimization Algorithm(BWOA)optimized ... The denoising of microseismic signals is a prerequisite for subsequent analysis and research.In this research,a new microseismic signal denoising algorithm called the Black Widow Optimization Algorithm(BWOA)optimized VariationalMode Decomposition(VMD)jointWavelet Threshold Denoising(WTD)algorithm(BVW)is proposed.The BVW algorithm integrates VMD and WTD,both of which are optimized by BWOA.Specifically,this algorithm utilizes VMD to decompose the microseismic signal to be denoised into several Band-Limited IntrinsicMode Functions(BLIMFs).Subsequently,these BLIMFs whose correlation coefficients with the microseismic signal to be denoised are higher than a threshold are selected as the effective mode functions,and the effective mode functions are denoised using WTD to filter out the residual low-and intermediate-frequency noise.Finally,the denoised microseismic signal is obtained through reconstruction.The ideal values of VMD parameters and WTD parameters are acquired by searching with BWOA to achieve the best VMD decomposition performance and solve the problem of relying on experience and requiring a large workload in the application of the WTD algorithm.The outcomes of simulated experiments indicate that this algorithm is capable of achieving good denoising performance under noise of different intensities,and the denoising performance is significantly better than the commonly used VMD and Empirical Mode Decomposition(EMD)algorithms.The BVW algorithm is more efficient in filtering noise,the waveform after denoising is smoother,the amplitude of the waveform is the closest to the original signal,and the signal-to-noise ratio(SNR)and the root mean square error after denoising are more satisfying.The case based on Fankou Lead-Zinc Mine shows that for microseismic signals with different intensities of noise monitored on-site,compared with VMD and EMD,the BVW algorithm ismore efficient in filtering noise,and the SNR after denoising is higher. 展开更多
关键词 variational mode decomposition microseismic signal DENOISING wavelet threshold denoising black widow optimization algorithm
在线阅读 下载PDF
A debris-flow forecasting method with infrasound-based variational mode decomposition and ARIMA
2
作者 DONG Hanchuan LIU Shuang +4 位作者 PANG Lili LIU Dunlong DENG Longsheng FANG Lide ZHANG Zhonghua 《Journal of Mountain Science》 SCIE CSCD 2024年第12期4019-4032,共14页
Infrasound,known for its strong penetration and low attenuation,is extensively used in monitoring and warning systems for debris flows.Here,a debris-flow forecasting method was proposed by combining infrasound-based v... Infrasound,known for its strong penetration and low attenuation,is extensively used in monitoring and warning systems for debris flows.Here,a debris-flow forecasting method was proposed by combining infrasound-based variational mode decomposition and Autoregressive Integrated Moving Average(ARIMA)model.High-precision infrasound sensor was utilized in experiments to record signals under twelve varying conditions of debris flow volume and velocity.Variational mode decomposition was performed on the detected raw signals,and the optimal decomposition scale and penalty factor were obtained through the sparrow search algorithm.The Hilbert transform,rescaled range analysis,power spectrum analysis,and Pearson correlation coefficients judgment criteria were employed to separate and reconstruct the signals.Based on the reconstructed infrasound signals,an ARIMA model was constructed to forecast the trend of debris flow infrasound signal.Results reveal that the Hilbert transform effectively separated noise,and the predictive model’s results fell within a 95%confidence interval.The Mean Absolute Percentage Error(MAPE)across four experiments were 4.87%,5.23%,5.32%and 4.47%,respectively,showing a satisfactory accuracy and providing an alternative for predicting debris flow by infrasound signals. 展开更多
关键词 Debris flow infrasound variational mode decomposition Sparrow search algorithm ARIMA model Hilbert transform
原文传递
Research on Modulation Signal Denoising Method Based on Improved Variational Mode Decomposition
3
作者 Canyu Mo Qianqiang Lin +1 位作者 Yuanduo Niu Haoran Du 《Journal of Electronic Research and Application》 2024年第1期7-15,共9页
In order to further analyze the micro-motion modulation signals generated by rotating components and extract micro-motion features,a modulation signal denoising algorithm based on improved variational mode decompositi... In order to further analyze the micro-motion modulation signals generated by rotating components and extract micro-motion features,a modulation signal denoising algorithm based on improved variational mode decomposition(VMD)is proposed.To improve the time-frequency performance,this method decomposes the data into narrowband signals and analyzes the internal energy and frequency variations within the signal.Genetic algorithms are used to adaptively optimize the mode number and bandwidth control parameters in the process of VMD.This approach aims to obtain the optimal parameter combination and perform mode decomposition on the micro-motion modulation signal.The optimal mode number and quadratic penalty factor for VMD are determined.Based on the optimal values of the mode number and quadratic penalty factor,the original signal is decomposed using VMD,resulting in optimal mode number intrinsic mode function(IMF)components.The effective modes are then reconstructed with the denoised modes,achieving signal denoising.Through experimental data verification,the proposed algorithm demonstrates effective denoising of modulation signals.In simulation data validation,the algorithm achieves the highest signal-to-noise ratio(SNR)and exhibits the best performance. 展开更多
关键词 Micro-motion modulation signal variational mode decomposition Genetic algorithm Adaptive optimization
在线阅读 下载PDF
Removal of Ocular Artifacts from Electroencephalo-Graph by Improving Variational Mode Decomposition 被引量:1
4
作者 Miao Shi Chao Wang +3 位作者 Wei Zhao Xinshi Zhang Ye Ye Nenggang Xie 《China Communications》 SCIE CSCD 2022年第2期47-61,共15页
Ocular artifacts in Electroencephalography(EEG)recordings lead to inaccurate results in signal analysis and process.Variational Mode Decomposition(VMD)is an adaptive and completely nonrecursive signal processing metho... Ocular artifacts in Electroencephalography(EEG)recordings lead to inaccurate results in signal analysis and process.Variational Mode Decomposition(VMD)is an adaptive and completely nonrecursive signal processing method.There are two parameters in VMD that have a great influence on the result of signal decomposition.Thus,this paper studies a signal decomposition by improving VMD based on squirrel search algorithm(SSA).It’s improved with abilities of global optimal guidance and opposition based learning.The original seasonal monitoring condition in SSA is modified.The feedback of whether the optimal solution is successfully updated is used to establish new seasonal monitoring conditions.Opposition-based learning is introduced to reposition the position of the population in this stage.It is applied to optimize the important parameters of VMD.GOSSA-VMD model is established to remove ocular artifacts from EEG recording.We have verified the effectiveness of our proposal in a public dataset compared with other methods.The proposed method improves the SNR of the dataset from-2.03 to 2.30. 展开更多
关键词 ocular artifact variational mode decomposition squirrel search algorithm global guidance ability opposition-based learning
在线阅读 下载PDF
基于RIME-IAOA的混合模型短期光伏功率预测 被引量:1
5
作者 王仁明 魏逸明 席磊 《三峡大学学报(自然科学版)》 CAS 北大核心 2025年第1期81-88,共8页
光伏发电在如今的新能源发展中逐渐成为重点,其中光伏功率预测成为研究的主要方向.为了提升光伏功率预测的精度和效率,提出了RIME-VMD-IAOA-LSTM模型.该模型通过霜冰优化算法(RIME)优化变分模态分解(VMD)的参数来提升分解效率;引入余弦... 光伏发电在如今的新能源发展中逐渐成为重点,其中光伏功率预测成为研究的主要方向.为了提升光伏功率预测的精度和效率,提出了RIME-VMD-IAOA-LSTM模型.该模型通过霜冰优化算法(RIME)优化变分模态分解(VMD)的参数来提升分解效率;引入余弦控制因子的动态边界策略来控制算数优化算法(AOA)数值的增长速率从而提升算法的精度和稳定性;利用自适应T分布变异策略来改进AOA的局部搜索能力和全局开发能力,更好地避免局部最优解.两种智能优化算法的加入使得整体模型的预测效率和速度都有很大提升,实验结果表明组合模型RIMEVMD-IAOA-LSTM相比于其他预测模型有较高的光伏功率预测精度. 展开更多
关键词 霜冰优化算法 变分模态分解 算术优化算法 余弦控制因子策略 自适应T分布策略 短期光伏功率预测
在线阅读 下载PDF
基于MIC特征提取与ICEEMD-RIME-DHKELM的建筑业碳排放预测模型 被引量:2
6
作者 张新生 聂达文 陈章政 《环境工程》 2025年第4期46-58,共13页
为解决建筑业碳排放研究中影响因素选取局限性、数据预处理不足、碳排放复杂动态变化及非线性问题,提出了一种基于最大信息系数(MIC)特征提取、改进互补集合经验模态分解(ICEEMD)、雾凇优化算法(RIME)与深度混合核极限学习机(DHKELM)的... 为解决建筑业碳排放研究中影响因素选取局限性、数据预处理不足、碳排放复杂动态变化及非线性问题,提出了一种基于最大信息系数(MIC)特征提取、改进互补集合经验模态分解(ICEEMD)、雾凇优化算法(RIME)与深度混合核极限学习机(DHKELM)的建筑业碳排放量预测模型。首先,根据IPCC计算方法,从直接和间接两个方面测算1992—2021年我国建筑业碳排放量,基于STIRPAT模型选取年末总人口数、国内生产总值、建筑业房屋竣工面积和能源结构等17个影响建筑业碳排放量的因素,然后利用灰色关联分析和MIC方法两阶段筛选出12个关键影响因素;其次,使用ICEEMD将建筑业碳排放量分解为多个平稳序列和一个残差项,并将其分别代入RIME算法优化关键参数后的DHKELM模型中。最后,将各分解序列的预测结果相加获得建筑业碳排放预测值,并对比分析多种基准模型的预测结果。结果显示:MIC-ICEEMD-RIME-DHKELM模型的预测性能最优,其均方根误差、平均绝对误差、平均绝对百分比误差和绝对相关系数分别为0.2782亿t、0.2672亿t、1.3783%和0.9576,均优于其他模型,证明该模型适用于建筑业碳排放量的预测。该研究成果为建筑业的低碳发展提供理论支持和技术参考。 展开更多
关键词 建筑业 碳排放 最大信息系数 改进互补集合经验模态分解 雾凇优化算法 深度混合核极限学习机
原文传递
基于RIME-VMD-RIME-BiLSTM的短期风电功率预测
7
作者 王秀云 祝宏斌 《电气应用》 2025年第4期85-95,共11页
针对风电功率时间序列的随机性和波动性,为提高风电预测准确度,提出了一种结合霜冰优化算法(RIME)、变分模态分解(Variational Mode Decomposition,VMD)与双向长短期神经网络(Bidirectional Long Short-Term Memory,BiLSTM)的短期风电... 针对风电功率时间序列的随机性和波动性,为提高风电预测准确度,提出了一种结合霜冰优化算法(RIME)、变分模态分解(Variational Mode Decomposition,VMD)与双向长短期神经网络(Bidirectional Long Short-Term Memory,BiLSTM)的短期风电功率预测组合模型。首先,利用RIME算法对VMD的分解层数和惩罚因子寻优;然后,使用VMD对风电序列进行分解,得到不同频率且平稳的固有模态分量(Intrinsic Mode Function,IMF);接着,将各IMF输入至经RIME算法完成超参数寻优的BiLSTM中进行预测;最后,将各输出值进行叠加重构,得到最终结果。实验结果表明,所提预测模型在测试集上的预测误差指标分别为0.584、0.489和3.26%,均为最低值,验证了RIMEVMD-RIME-BiLSTM混合预测模型在风电功率预测领域具有较好的预测准确度和鲁棒性。 展开更多
关键词 风电功率 霜冰优化算法 变分模态分解 BiLSTM
原文传递
基于RIME优化VMD与TCN-Crossformer多尺度融合的短期电力负荷预测
8
作者 黄宇 胡怡然 +3 位作者 马金杰 梁博彦 崔玉雷 张浩 《电力科学与工程》 2025年第8期48-57,共10页
针对电力负荷序列的多尺度非平稳性与跨维度动态关联特征导致的协同建模难题,提出了一种基于霜冰优化算法(Rime optimization algorithm,RIME)改进的变分模态分解(Variational mode decomposition,VMD)与时间卷积网络(Temporal convolut... 针对电力负荷序列的多尺度非平稳性与跨维度动态关联特征导致的协同建模难题,提出了一种基于霜冰优化算法(Rime optimization algorithm,RIME)改进的变分模态分解(Variational mode decomposition,VMD)与时间卷积网络(Temporal convolutional network,TCN)-Crossformer多尺度融合的预测模型。首先,利用RIME算法以样本熵均值为适应度函数,自适应优化VMD的惩罚系数与模态数,抑制模态混叠并提升分解质量;其次,通过TCN的因果卷积与膨胀卷积结构提取各模态分量的局部时序波动特征,捕捉短期波动规律;最后,采用结合Crossformer的跨维度注意力机制,显式建模时间与特征维度的动态关联性,实现局部时序特征与全局依赖关系的多尺度协同融合。在南方某城市半小时级电力负荷数据集上的实验验证结果表明,相较于Informer等模型,所提模型的决定系数提升2.49%,平均绝对误差降低73.07%,且在四季预测中均表现出强鲁棒性。 展开更多
关键词 变分模态分解 跨维度注意力 rime优化算法 时间卷积网络 Crossformer
在线阅读 下载PDF
基于RIME-VMD的高速列车横向减振器故障诊断 被引量:4
9
作者 秦永峰 李刚 +1 位作者 齐金平 王建帅 《铁道科学与工程学报》 北大核心 2025年第3期942-953,共12页
为解决变分模态分解(VMD)在高速列车横向减振器故障诊断中特征提取较为困难的问题,提出一种基于霜冰算法(RIME)以最小包络熵作为适应度函数优化变分模态分解(VMD)的特征提取方法。首先,使用霜冰算法(RIME)优化VMD在不同故障状态下模态(I... 为解决变分模态分解(VMD)在高速列车横向减振器故障诊断中特征提取较为困难的问题,提出一种基于霜冰算法(RIME)以最小包络熵作为适应度函数优化变分模态分解(VMD)的特征提取方法。首先,使用霜冰算法(RIME)优化VMD在不同故障状态下模态(IMF)分量的个数和惩罚因子的最优参数组合;其次,计算各个IMFs分量的峭度值与相关性系数,再分别选取峭度值较大的前4阶IMF分量,并在峭度值较大的4个IMFs分量中选取相关性系数较高的前3阶IMFs进行信号重构降噪;最后,计算多尺度的奇异熵、样本熵、排列熵作为故障特征值,并结合t分布随机近邻嵌入(t-SNE)算法降维去除冗余特征信息,将降维融合后的特征矩阵逐一输入到支持向量机(SVM)中,从而实现对高速列车横向减振器不同故障部位的识别。仿真实验结果表明:相较于灰狼算法(GWO)优化变分模态分解(VMD)的方法,RIME-VMD方法利用霜冰算法高效的搜索与开发能力,可以更快速寻得高速列车不同工况下,变分模态分解中分解层数和惩罚因子参数的全局最优组合,提高了VMD分解信号的鲁棒性,采用信号重构的方法可以有效提取故障特征,实现高速列车横向减振器故障的高效、准确识别。原始变分模态分解(VMD)方法虽然分解速度较快,但原始VMD参数的人工试错成本更高,不能满足高速列车故障诊断的要求。研究结果可为高速列车横向减振器故障诊断和安全运营进一步优化提供参考。 展开更多
关键词 转向架 变分模态分解 霜冰算法 故障诊断 多尺度奇异熵
在线阅读 下载PDF
基于RIME-VMD-TCN-Attention的船舶电力负荷预测
10
作者 骆佳馨 高海波 +2 位作者 欧阳继能 李程 陈灿 《舰船科学技术》 北大核心 2025年第18期112-118,共7页
船舶电力负荷因具有噪声多、随机性和非线性强的特点,在短期电力负荷预测中存在噪声干扰、特征提取困难和模型拟合度差的问题。故本文提出一种结合霜冰优化算法(Rime Optimization Algorithm,RIME)的变分模态分解(Variational Mode Deco... 船舶电力负荷因具有噪声多、随机性和非线性强的特点,在短期电力负荷预测中存在噪声干扰、特征提取困难和模型拟合度差的问题。故本文提出一种结合霜冰优化算法(Rime Optimization Algorithm,RIME)的变分模态分解(Variational Mode Decomposition,VMD)、时序卷积网络(Temporal Convolutional Network,TCN)和注意力机制的组合预测模型。首先,通过RIME-VMD分解,将复杂的船舶电力负荷信号分解为多个仅包含简单负荷特征的单独模态,以减少噪声的影响同时提高分解效率;其次,通过TCN模型结合Attention机制对各模态分量进行预测并将结果组合,使模型自适应捕捉电力负荷中的非线性特征,提高时序预测能力;最后,实验分析表明,本文提出的RIME-VMD-TCN-Attention模型误差指标MAE、MAPE、RMSE和R2均优于传统LSTM模型、GRU模型、单一TCN模型和未经模态分解的混合模型,具有更高的预测精度。 展开更多
关键词 船舶短期电力负荷预测 霜冰优化算法 变分模态分解 时序卷积网络 注意力机制
在线阅读 下载PDF
基于RIME-VMD和SSA-CNN-Transformer的滚动轴承故障诊断
11
作者 杨雄 石宇城 +1 位作者 陈儒晖 贺朋飞 《贵州大学学报(自然科学版)》 2025年第3期44-51,共8页
为了解决滚动轴承早期故障信号微弱、特征提取效果不佳,从而影响故障诊断准确性和效率的问题,本文提出了一种结合信号处理与深度神经网络的故障诊断模型。首先,利用霜冰优化算法对变分模态分解的参数进行优化,以获得最佳模态分量;其次,... 为了解决滚动轴承早期故障信号微弱、特征提取效果不佳,从而影响故障诊断准确性和效率的问题,本文提出了一种结合信号处理与深度神经网络的故障诊断模型。首先,利用霜冰优化算法对变分模态分解的参数进行优化,以获得最佳模态分量;其次,使用麻雀优化算法对CNN-Transformer组合模型的超参数进行调优;最后,将最优模态分量输入优化后的CNN-Transformer模型,以得到故障分类结果。通过美国CWRU轴承数据集验证,实验结果显示,该模型在准确性和稳定性方面相比其他故障诊断模型有显著提升,能够为工业设备的可靠维护提供更精准的故障诊断支持。 展开更多
关键词 变分模态分解 霜冰优化算法 卷积神经网络 TRANSFORMER 麻雀优化算法 故障诊断 滚动轴承
在线阅读 下载PDF
基于VMD-RIME-LSTM算法的天然气负荷预测
12
作者 张凯 高伟 +3 位作者 刘晓磊 孙旭 卜跃刚 张宏喜 《区域供热》 2025年第2期51-59,106,共10页
针对某企业各用能端用能无序、多台燃气锅炉交互使用,天然气日用气负荷波动性大等问题,提出了一种变分模态分解(VMD)和霜冰优化算法(RIME)与长短期记忆神经网络(Long Short-Term Memory,LSTM)相耦合的天然气负荷预测模型。首先使用VMD... 针对某企业各用能端用能无序、多台燃气锅炉交互使用,天然气日用气负荷波动性大等问题,提出了一种变分模态分解(VMD)和霜冰优化算法(RIME)与长短期记忆神经网络(Long Short-Term Memory,LSTM)相耦合的天然气负荷预测模型。首先使用VMD对经过数据清洗的天然气负荷序列进行分解,将复杂的信号分解为若干个不同频率的模态分量(Intrinsic Mode Function,IMF);然后将各模态分量输入到经霜冰优化算法优化过的长短期记忆神经网络模型中进行预测,最后将各子序列预测结果叠加重构得到最终预测结果。实验结果表明:相比于单一长短期神经网络模型LSTM以及VMD-LSTM模型,这种VMD-RIME-LSTM模型在天然气负荷预测方面具有较好的预测精度,可为企业燃气锅炉系统实现更精确的运行管理和能源利用提供数据支撑。 展开更多
关键词 变分模态分解 霜冰优化算法 长短期记忆神经网络 天然气负荷 时序预测
在线阅读 下载PDF
基于模态分解和RIME-CNN-BiLSTM-AM的风速预测方法
13
作者 朱婷 颜七笙 《科学技术与工程》 北大核心 2025年第20期8514-8525,共12页
作为一种清洁的可再生能源,风能在缓解日益严重的能源危机方面充当着重要作用。然而,风速的波动性和随机性给电力系统的稳定运行带来了严峻的挑战。针对该问题,提出一种基于自适应噪声完备集合经验模态分解(complete ensemble empirical... 作为一种清洁的可再生能源,风能在缓解日益严重的能源危机方面充当着重要作用。然而,风速的波动性和随机性给电力系统的稳定运行带来了严峻的挑战。针对该问题,提出一种基于自适应噪声完备集合经验模态分解(complete ensemble empirical mode decomposition with adaptive noise,CEEMDAN)与霜冰优化算法(rime optimization algorithm,RIME)-卷积神经网络(convolutional neural network,CNN)-双向长短期记忆网络(bidirectional long short-term memory network,BiLSTM)-注意力机制(attention mechanism,AM)的短期风速预测组合模型CEEMDAN-RIME-CNN-BiLSTM-AM。首先,对初始风速序列采用CEEMDAN算法,得到一系列较平稳的子模态,以降低风速序列的波动性;然后,采用RIME霜冰优化算法优化CNN超参数,建立CNN-RIME模型,对风速数据进行自适应提取和挖掘;接着,采用BiLSTM-AM模型对处理后的数据进行预测;最后,将各子序列的预测结果叠加,得到最终预测结果。以某地实际风速数据集进行对比试验,该模型在单步与多步预测中均展现出良好的预测性能,可以为制定调度计划提供参考,以最大程度地提高能源利用率和供电。 展开更多
关键词 风速预测 自适应噪声完备集合经验模态分解(CEEMDAN) 霜冰优化算法(rime) 卷积神经网络(CNN) 双向长短期记忆网络(BiLSTM) 注意力机制(AM)
在线阅读 下载PDF
基于RIME-CNN-SVR模型的麦田土壤水分反演 被引量:5
14
作者 王然 赵建辉 +1 位作者 杨会巾 李宁 《农业工程学报》 EI CAS CSCD 北大核心 2024年第15期94-102,共9页
土壤水分监测对于农业生产和作物产量预估具有重要意义。近年来深度学习技术在土壤水分反演领域得到广泛应用,但大多侧重于模型结构增强和优化,对模型超参数优化研究探索不足。该研究提出了一种基于霜冰优化算法(rime optimization algo... 土壤水分监测对于农业生产和作物产量预估具有重要意义。近年来深度学习技术在土壤水分反演领域得到广泛应用,但大多侧重于模型结构增强和优化,对模型超参数优化研究探索不足。该研究提出了一种基于霜冰优化算法(rime optimization algorithm,RIME)的卷积神经网络(convolutional neural network,CNN)超参数优化模型,结合极化分解技术来校正植被对土壤水分反演精度的影响,以提高冬小麦农田土壤水分反演性能。首先利用RIME优化CNN超参数以构建RIME-CNN模型,然后使用RIME-CNN模型对特征参数进行自适应提取和挖掘,之后对这些特征参数进行正则化处理并输入到支持向量回归(support vector regression,SVR)模型,构建RIME-CNN-SVR模型进行土壤水分估算。为验证所建RIME-CNN-SVR模型的有效性,利用合成孔径雷达(synthetic aperture radar,SAR)数据结合光学遥感数据,在河南省开封市冬小麦农田区进行试验验证和精度分析。结果表明,该方法在不增加模型结构复杂性和可学习参数的前提下,显著提升了模型的预测性能,决定系数可达0.72,均方根误差为2.78%,平均绝对误差为2.20%。该研究可为农业生产提供一个更为准确、可靠的土壤水分监测手段。 展开更多
关键词 土壤水分 卷积神经网络 支持向量回归 霜冰优化算法 极化分解 合成孔径雷达
在线阅读 下载PDF
Prediction for permeability index of blast furnace based on VMD-PSO-BP model 被引量:4
15
作者 Xiao-jie Liu Yu-jie Zhang +4 位作者 Xin Li Zhi-feng Zhang Hong-yang Li Ran Liu Shu-jun Chen 《Journal of Iron and Steel Research International》 SCIE EI CAS CSCD 2024年第3期573-583,共11页
The permeability index is one of the important production indicators to monitor the operation of blast furnace.It is crucial to grasp the trends of changes in the new permeability index in time.For the complex vibrati... The permeability index is one of the important production indicators to monitor the operation of blast furnace.It is crucial to grasp the trends of changes in the new permeability index in time.For the complex vibration spectrum of the permeability index,a prediction model of the permeability index based on the VMD-PSO-BP(variational mode decomposition-particle swarm optimization-back propagation)method was proposed.Firstly,the key factors that affect the permeability index of blast furnace were studied from multiple perspectives.Then,the permeability index was divided into multiple sub-modes based on the difference of frequency bands by the VMD algorithm,and a PSO-BP prediction model was established for each sub-mode.Finally,the prediction results of each sub-mode were summed to obtain the final one.The results show that the composite prediction accuracy by using the VMD algorithm is 3%higher than that of the traditional prediction method,which has better applicability. 展开更多
关键词 Big data-Blast furnace Air permeability variational mode decomposition Particle swarm optimization Back propagation model prediction
原文传递
基于RIME优化VMD-HHT的轴承故障特征提取方法 被引量:1
16
作者 李奕宏 王燕 《北京印刷学院学报》 2024年第12期29-36,共8页
为解决目前滚动轴承故障特征提取困难和在进行变分模态分解(VMD)时,盲目选取模态数和惩罚因子,以及相较于HHT边际谱,傅里叶分析频谱只反映某一个频率在信号中的存在可能性的问题,本文提出一种基于RIME优化VMD-HHT的轴承故障特征提取方... 为解决目前滚动轴承故障特征提取困难和在进行变分模态分解(VMD)时,盲目选取模态数和惩罚因子,以及相较于HHT边际谱,傅里叶分析频谱只反映某一个频率在信号中的存在可能性的问题,本文提出一种基于RIME优化VMD-HHT的轴承故障特征提取方法。首先,利用霜冰优化算法(RIME)对滚动轴承信号进行分析,采用样本熵作为适应度函数,计算出最佳分解层数和惩罚因子;然后基于得到的最优分解参数,对轴承信号进行分解得到各模态分量,随后根据中心频率验证有效性,并将其与北方苍鹰优化算法(NGO)优化VMD方法进行对比,随后使用希尔伯特变换获得各模态分量的频谱特性;最后计算各模态分量的特征参数,构成特征量集合,用于识别轴承故障信号。实验结果表明该方法得到的参数合理有效且参数最优,所提出的特征提取方法能有效分解滚动轴承故障信号并构建相应特征量集合。 展开更多
关键词 轴承故障 变分模态分解(VMD) 霜冰优化算法(rime) 希尔伯特边际谱(HHT) 特征提取
在线阅读 下载PDF
Hybrid data decomposition-based deep learning for Bitcoin prediction and algorithm trading
17
作者 Yuze Li Shangrong Jiang +1 位作者 Xuerong Li Shouyang Wang 《Financial Innovation》 2022年第1期901-924,共24页
In recent years,Bitcoin has received substantial attention as potentially high-earning investment.However,its volatile price movement exhibits great financial risks.Therefore,how to accurately predict and capture chan... In recent years,Bitcoin has received substantial attention as potentially high-earning investment.However,its volatile price movement exhibits great financial risks.Therefore,how to accurately predict and capture changing trends in the Bitcoin market is of substantial importance to investors and policy makers.However,empirical works in the Bitcoin forecasting and trading support systems are at an early stage.To fill this void,this study proposes a novel data decomposition-based hybrid bidirectional deep-learning model in forecasting the daily price change in the Bitcoin market and conducting algorithmic trading on the market.Two primary steps are involved in our methodology framework,namely,data decomposition for inner factors extraction and bidirectional deep learning for forecasting the Bitcoin price.Results demonstrate that the proposed model outperforms other benchmark models,including econometric models,machine-learning models,and deep-learning models.Furthermore,the proposed model achieved higher investment returns than all benchmark models and the buy-and-hold strategy in a trading simulation.The robustness of the model is verified through multiple forecasting periods and testing intervals. 展开更多
关键词 Bitcoin price variational mode decomposition Deep learning Price forecasting algorithmic trading
在线阅读 下载PDF
基于改进VMD及ConvNeXt的小电流接地系统单相接地故障选线方法 被引量:2
18
作者 张浩 张大海 +2 位作者 刘乃毓 吴奎忠 侍哲 《高电压技术》 北大核心 2025年第2期730-741,I0021,共13页
对于小电流接地系统的单相接地故障选线,传统方法普遍采用基于一维信号的选线模型,存在选线准确率低、抗噪性弱等问题。为此提出一种改进的变分模态分解及Conv Ne Xt的小电流接地系统单相接地故障选线方法。首先引入蚁狮算法优化变分模... 对于小电流接地系统的单相接地故障选线,传统方法普遍采用基于一维信号的选线模型,存在选线准确率低、抗噪性弱等问题。为此提出一种改进的变分模态分解及Conv Ne Xt的小电流接地系统单相接地故障选线方法。首先引入蚁狮算法优化变分模态分解算法,通过蚁狮算法自动寻优选取合适的分解次数和惩罚因子,计算分解得到的各分量的分布熵,将其中的噪声分量筛选去除,将其余有效分量进行线性重构得到降噪后的零序电流信号;其次,将经过降噪处理后的一维零序电流信号经格拉姆角场转换为二维图像,制备故障选线数据集;然后,引入预训练的ConvNeXt模型,根据该研究数据模型特征,在其已有权重基础上对模型参数进行对应微调,从而提高模型精度并形成最终的选线模型;最后引入绝对平均误差、均方根误差作为评价指标验证所提降噪算法有效性。分别在加入噪声与否的前提下,将所提模型与3种选线模型相比较。实验结果表明该模型的准确率最高、抗噪性方面更好,其中该研究算法准确率达到了99.82%并且在不同噪声条件下都能维持91%以上的准确率,高于其他选线模型,克服了传统故障选线方法准确率低、抗噪性差的问题。 展开更多
关键词 故障选线 蚁狮优化算法 变分模态分解 分布熵 格拉姆角场 Conv Ne Xt
原文传递
一种适用于混合三端直流输电线路的故障定位方法 被引量:1
19
作者 高淑萍 杨莉莉 +2 位作者 武心宇 周晋宇 宋国兵 《西安交通大学学报》 EI CAS 北大核心 2025年第1期37-46,共10页
针对因结构复杂导致的混合三端直流输电线路故障定位困难的问题,提出了一种结合变分模态分解算法与改进卷积神经网络(CNN)的故障定位方法(VMD-CNN)。首先,利用PSCAD/EMTDC软件构建混合三端直流输电系统模型,获得故障电流数据,应用克拉... 针对因结构复杂导致的混合三端直流输电线路故障定位困难的问题,提出了一种结合变分模态分解算法与改进卷积神经网络(CNN)的故障定位方法(VMD-CNN)。首先,利用PSCAD/EMTDC软件构建混合三端直流输电系统模型,获得故障电流数据,应用克拉克变换对其解耦,获取故障电流的线模分量;其次,对得到的线模分量进行变分模态分解(VMD),得到多个本征模态函数(IMF)分量,选取特征信息最丰富的IMF分量作为VMD-CNN模型的输入;然后,利用高效的分类模型支持向量机(SVM)判别故障发生的区域,将提取到的IMF分量作为SVM输入进行训练学习,可以准确判断出故障发生区域;最后,搭建VMD-CNN模型进行故障定位,挖掘出行波信号中蕴藏的故障信息,同时通过麻雀搜索算法优化CNN中的超参数,实现混合三端直流输电线路的精确定位。仿真结果表明:过渡电阻为100Ω,不同故障位置情况下的定位相对误差均在0.17%以内;故障位置为460 km,不同过渡电阻情况下的定位相对误差均在0.25%以内;过渡电阻为50Ω,不同故障类型情况下的相对误差均在0.3%以内。所提方法能够提升不同故障位置、过渡电阻和故障类型下的定位准确性。 展开更多
关键词 混合三端直流输电 故障定位 变分模态分解 卷积神经网络 麻雀搜索算法
在线阅读 下载PDF
基于参数优化变分模态分解的信号降噪方法 被引量:1
20
作者 何玉洁 李新娥 贺俊 《现代电子技术》 北大核心 2025年第2期70-76,共7页
针对心电信号中肌电干扰噪声难以去除的问题,提出一种基于参数优化变分模态分解(VMD)的信号降噪方法。通过设计动态边界策略和反向种群生成方式,对白鲸优化(BWO)算法进行改进;采用改进白鲸优化算法对VMD参数自适应寻优,确定分解层数K与... 针对心电信号中肌电干扰噪声难以去除的问题,提出一种基于参数优化变分模态分解(VMD)的信号降噪方法。通过设计动态边界策略和反向种群生成方式,对白鲸优化(BWO)算法进行改进;采用改进白鲸优化算法对VMD参数自适应寻优,确定分解层数K与惩罚因子α;对含噪心电信号进行分解,得到k个本征模态函数(IMF)分量,同时采用相关系数法进行有效模态和含噪模态识别;对噪声主导的模态分量采用小波阈值降噪,并重构信号主导模态与降噪后模态。对仿真信号与含真实肌电干扰的心电信号进行降噪处理,实验结果表明,所提方法去噪效果优于小波阈值去噪法、EMD法、EMD-小波阈值去噪法,真实含噪的心电信号经该方法去噪后自相关系数可达0.91以上。 展开更多
关键词 变分模态分解 信号降噪 参数优化 改进白鲸优化算法 心电信号 IMF分量 小波阈值降噪 肌电干扰
在线阅读 下载PDF
上一页 1 2 53 下一页 到第
使用帮助 返回顶部