期刊文献+
共找到160篇文章
< 1 2 8 >
每页显示 20 50 100
Variational Gridded Graph Convolution Network for Node Classification 被引量:3
1
作者 Xiaobin Hong Tong Zhang +1 位作者 Zhen Cui Jian Yang 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2021年第10期1697-1708,共12页
The existing graph convolution methods usually suffer high computational burdens,large memory requirements,and intractable batch-processing.In this paper,we propose a high-efficient variational gridded graph convoluti... The existing graph convolution methods usually suffer high computational burdens,large memory requirements,and intractable batch-processing.In this paper,we propose a high-efficient variational gridded graph convolution network(VG-GCN)to encode non-regular graph data,which overcomes all these aforementioned problems.To capture graph topology structures efficiently,in the proposed framework,we propose a hierarchically-coarsened random walk(hcr-walk)by taking advantage of the classic random walk and node/edge encapsulation.The hcr-walk greatly mitigates the problem of exponentially explosive sampling times which occur in the classic version,while preserving graph structures well.To efficiently encode local hcr-walk around one reference node,we project hcrwalk into an ordered space to form image-like grid data,which favors those conventional convolution networks.Instead of the direct 2-D convolution filtering,a variational convolution block(VCB)is designed to model the distribution of the randomsampling hcr-walk inspired by the well-formulated variational inference.We experimentally validate the efficiency and effectiveness of our proposed VG-GCN,which has high computation speed,and the comparable or even better performance when compared with baseline GCNs. 展开更多
关键词 graph coarsening GRIDDING node classification random walk variational convolution
在线阅读 下载PDF
SNP site-drug association prediction algorithm based on denoising variational auto-encoder 被引量:1
2
作者 SONG Xiaoyu FENG Xiaobei +3 位作者 ZHU Lin LIU Tong WU Hongyang LI Yifan 《Journal of Measurement Science and Instrumentation》 CAS CSCD 2022年第3期300-308,共9页
Single nucletide polymorphism(SNP)is an important factor for the study of genetic variation in human families and animal and plant strains.Therefore,it is widely used in the study of population genetics and disease re... Single nucletide polymorphism(SNP)is an important factor for the study of genetic variation in human families and animal and plant strains.Therefore,it is widely used in the study of population genetics and disease related gene.In pharmacogenomics research,identifying the association between SNP site and drug is the key to clinical precision medication,therefore,a predictive model of SNP site and drug association based on denoising variational auto-encoder(DVAE-SVM)is proposed.Firstly,k-mer algorithm is used to construct the initial SNP site feature vector,meanwhile,MACCS molecular fingerprint is introduced to generate the feature vector of the drug module.Then,we use the DVAE to extract the effective features of the initial feature vector of the SNP site.Finally,the effective feature vector of the SNP site and the feature vector of the drug module are fused input to the support vector machines(SVM)to predict the relationship of SNP site and drug module.The results of five-fold cross-validation experiments indicate that the proposed algorithm performs better than random forest(RF)and logistic regression(LR)classification.Further experiments show that compared with the feature extraction algorithms of principal component analysis(PCA),denoising auto-encoder(DAE)and variational auto-encode(VAE),the proposed algorithm has better prediction results. 展开更多
关键词 association prediction k-mer molecular fingerprinting support vector machine(SVM) denoising variational auto-encoder(DVAE)
在线阅读 下载PDF
Distributed algorithm for solving variational inequalities over time-varying unbalanced digraphs
3
作者 Yichen Zhang Yutao Tang +1 位作者 Zhipeng Tu Yiguang Hong 《Control Theory and Technology》 EI CSCD 2024年第3期431-441,共11页
In this paper,we study a distributed model to cooperatively compute variational inequalities over time-varying directed graphs.Here,each agent has access to a part of the full mapping and holds a local view of the glo... In this paper,we study a distributed model to cooperatively compute variational inequalities over time-varying directed graphs.Here,each agent has access to a part of the full mapping and holds a local view of the global set constraint.By virtue of an auxiliary vector to compensate the graph imbalance,we propose a consensus-based distributed projection algorithm relying on local computation and communication at each agent.We show the convergence of this algorithm over uniformly jointly strongly connected unbalanced digraphs with nonidentical local constraints.We also provide a numerical example to illustrate the effectiveness of our algorithm. 展开更多
关键词 variational inequality Distributed computation Multi-agent system Weight-unbalanced graph
原文传递
Feature-aided pose estimation approach based on variational auto-encoder structure for spacecrafts
4
作者 Yanfang LIU Rui ZHOU +2 位作者 Desong DU Shuqing CAO Naiming QI 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2024年第8期329-341,共13页
Real-time 6 Degree-of-Freedom(DoF)pose estimation is of paramount importance for various on-orbit tasks.Benefiting from the development of deep learning,Convolutional Neural Networks(CNNs)in feature extraction has yie... Real-time 6 Degree-of-Freedom(DoF)pose estimation is of paramount importance for various on-orbit tasks.Benefiting from the development of deep learning,Convolutional Neural Networks(CNNs)in feature extraction has yielded impressive achievements for spacecraft pose estimation.To improve the robustness and interpretability of CNNs,this paper proposes a Pose Estimation approach based on Variational Auto-Encoder structure(PE-VAE)and a Feature-Aided pose estimation approach based on Variational Auto-Encoder structure(FA-VAE),which aim to accurately estimate the 6 DoF pose of a target spacecraft.Both methods treat the pose vector as latent variables,employing an encoder-decoder network with a Variational Auto-Encoder(VAE)structure.To enhance the precision of pose estimation,PE-VAE uses the VAE structure to introduce reconstruction mechanism with the whole image.Furthermore,FA-VAE enforces feature shape constraints by exclusively reconstructing the segment of the target spacecraft with the desired shape.Comparative evaluation against leading methods on public datasets reveals similar accuracy with a threefold improvement in processing speed,showcasing the significant contribution of VAE structures to accuracy enhancement,and the additional benefit of incorporating global shape prior features. 展开更多
关键词 Pose estimation variational auto-encoder Feature-aided Pose Estimation Approach On-orbit measurement tasks Simulated and experimental dataset
原文传递
A DIRECTED GRAPH ALGORITHM OF VARIATIONAL GEOMETRY BASED ON GEOMETRIC REASONING
5
作者 Ruibin Qu 《Computer Aided Drafting,Design and Manufacturing》 1995年第2期44-52,共4页
The undirected graph to express engineering drawings is discussed .The principle to re-solve and reason the undirected graph is presented, and the algorithm finally transforms theundirected graph into the resolvable d... The undirected graph to express engineering drawings is discussed .The principle to re-solve and reason the undirected graph is presented, and the algorithm finally transforms theundirected graph into the resolvable directed graph. Therefore,a rapid and simple way is suppliedfor variational design. A prototype of this algorithm has been implemented, and some examplesare given. 展开更多
关键词 undirected/directed graph topological/dimensional constraints variational geometry
全文增补中
Low Frequency Residential Load Disaggregation via Improved Variational Auto-encoder and Siamese Network
6
作者 Cheng Qian Zaijun Wu +2 位作者 Dongliang Xu Qinran Hu Yu Liu 《CSEE Journal of Power and Energy Systems》 2025年第5期2137-2149,共13页
Non-intrusive load monitoring(NILM)can infer load profiles for each individual appliance from aggregated power consumption signals without installing extra sub-meters.However,performance of traditional energy disaggre... Non-intrusive load monitoring(NILM)can infer load profiles for each individual appliance from aggregated power consumption signals without installing extra sub-meters.However,performance of traditional energy disaggregation methods deteriorates in complex environments,especially susceptible to the presence of other high power consumption appliances.Practicalities are also limited by diversity of household load patterns and measurement errors.In order to address these problems,a hybrid deep learning model consisting of two steps is proposed in this paper.First,an improved variational autoencoder(VAE)structure is introduced for preliminary energy disaggregation,where the encoder and decoder layers are long short-term networks(LSTM)to extract temporal characteristics of active power signals.Afterward,a post-processing method based on Siamese one-dimensional convolutional neural network(S-1D-CNN)is adopted to remove incorrectly predicted activation segments of target appliances.Experiments are conducted on two public datasets,and results show remarkable improvements on prediction accuracy over other deep learning methods.Both transferability and stability of the proposed model are verified under different working conditions. 展开更多
关键词 Deep learning NILM POST-PROCESSING Siamese network variational auto-encoder
原文传递
VMGP:A unified variational auto-encoder based multi-task model for multi-phenotype,multi-environment,and cross-population genomic selection in plants
7
作者 Xiangyu Zhao Fuzhen Sun +6 位作者 Jinlong Li Dongfeng Zhang Qiusi Zhang Zhongqiang Liu Changwei Tan Hongxiang Ma Kaiyi Wang 《Artificial Intelligence in Agriculture》 2025年第4期829-842,共14页
Plant breeding stands as a cornerstone for agricultural productivity and the safeguarding of food security.The advent of Genomic Selection heralds a new epoch in breeding,characterized by its capacity to harness whole... Plant breeding stands as a cornerstone for agricultural productivity and the safeguarding of food security.The advent of Genomic Selection heralds a new epoch in breeding,characterized by its capacity to harness whole-genome variation for genomic prediction.This approach transcends the need for prior knowledge of genes associated with specific traits.Nonetheless,the vast dimensionality of genomic data juxtaposed with the relatively limited number of phenotypic samples often leads to the“curse of dimensionality”,where traditional statistical,machine learning,and deep learning methods are prone to overfitting and suboptimal predictive performance.To surmount this challenge,we introduce a unified Variational auto-encoder based Multi-task Genomic Prediction model(VMGP)that integrates self-supervised genomic compression and reconstruction with multiple prediction tasks.This approach provides a robust solution,offering a formidable predictive framework that has been rigorously validated across public datasets for wheat,rice,and maize.Our model demonstrates exceptional capabilities in multi-phenotype and multi-environment genomic prediction,successfully navigating the complexities of cross-population genomic selection and underscoring its unique strengths and utility.Furthermore,by integrating VMGP with model interpretability,we can effectively triage relevant single nucleotide polymorphisms,thereby enhancing prediction performance and proposing potential cost-effective genotyping solutions.The VMGP framework,with its simplicity,stable predictive prowess,and open-source code,is exceptionally well-suited for broad dissemination within plant breeding programs.It is particularly advantageous for breeders who prioritize phenotype prediction yet may not possess extensive knowledge in deep learning or proficiency in parameter tuning. 展开更多
关键词 Genomic selection variational auto-encoder MULTI-TASK Deep learning Genomic prediction
原文传递
Study of current distribution generation in PEMFC based on conditional variational auto-encoder
8
作者 Chengyin Shi Cong Yin +2 位作者 Weilong Luo Hailong Liu Hao Tang 《Energy and AI》 2025年第3期578-591,共14页
The Proton Exchange Membrane Fuel Cell(PEMFC)converts the chemical energy of hydrogen fuel directly into electrical energy with broad application prospects.Understanding how current density is distributed in the PEMFC... The Proton Exchange Membrane Fuel Cell(PEMFC)converts the chemical energy of hydrogen fuel directly into electrical energy with broad application prospects.Understanding how current density is distributed in the PEMFC systems is crucial as it is a key factor influencing system performance.However,direct modeling for current distribution may encounter the challenge of dimensional catastrophe owing to the high dimensionality of the data.This paper uses a high-resolution segmented measurement device with 396 points to conduct experimental tests on the current distribution of a PEMFC with reactive area of 406 cm^(2) during a stepwise increase in load current.The current distribution is modeled based on the test results to learn the mapping relationship between the experimental parameters and the current distribution.The proposed model utilizes a Conditional Variational Auto-Encoder(CVAE)to generate current distributions.The MSE(Mean-Square Error)of the trained CVAE model reaches 9.2×10^(-5),and the comparison results show that the 222.9A current distribution error has the largest MSE of 6.36×10^(-4) and a KL Divergence(Kullback-Leibler Divergence)of 9.55×10^(-4),both of which are at a low level.This model enables the direct determination of the current distribution based on the experimental parameters,thereby establishing a technical foundation for investigating the impact of experimental conditions on fuel cells.This model is also of great significance for research on fuel cell system control strategies and fault diagnosis. 展开更多
关键词 Proton exchange membrane fuel cell Segmented measurement device Current distribution Conditional variational auto-encoder
在线阅读 下载PDF
A significant wave height prediction method with ocean characteristics fusion and spatiotemporal dynamic graph modeling
9
作者 Xiao Yin Taoxing Wu +2 位作者 Jie Yu Xiaoyu He Lingyu Xu 《Acta Oceanologica Sinica》 CSCD 2024年第12期13-33,共21页
Accurate significant wave height(SWH)prediction is essential for the development and utilization of wave energy.Deep learning methods such as recurrent and convolutional neural networks have achieved good results in S... Accurate significant wave height(SWH)prediction is essential for the development and utilization of wave energy.Deep learning methods such as recurrent and convolutional neural networks have achieved good results in SWH forecasting.However,these methods do not adapt well to dynamic seasonal variations in wave data.In this study,we propose a novel method—the spatiotemporal dynamic graph(STDG)neural network.This method predicts the SWH of multiple nodes based on dynamic graph modeling and multi-characteristic fusion.First,considering the dynamic seasonal variations in the wave direction over time,the network models wave dynamic spatial dependencies from long-and short-term pattern perspectives.Second,to correlate multiple characteristics with SWH,the network introduces a cross-characteristic transformer to effectively fuse multiple characteristics.Finally,we conducted experiments on two datasets from the South China Sea and East China Sea to validate the proposed method and compared it with five prediction methods in the three categories.The experimental results show that the proposed method achieves the best performance at all predictive scales and has greater advantages for extreme value prediction.Furthermore,an analysis of the dynamic graph shows that the proposed method captures the seasonal variation mechanism of the waves. 展开更多
关键词 significant wave height forecasting dynamic seasonal variation dynamic graph neural networks
在线阅读 下载PDF
Predicting the Antigenic Variant of Human Influenza A(H3N2) Virus with a Stacked Auto-Encoder Model
10
作者 Zhiying Tan Kenli Li +1 位作者 Taijiao Jiang Yousong Peng 《国际计算机前沿大会会议论文集》 2017年第2期71-73,共3页
The influenza virus changes its antigenicity frequently due to rapid mutations, leading to immune escape and failure of vaccination. Rapid determination of the influenza antigenicity could help identify the antigenic ... The influenza virus changes its antigenicity frequently due to rapid mutations, leading to immune escape and failure of vaccination. Rapid determination of the influenza antigenicity could help identify the antigenic variants in time. Here, we built a stacked auto-encoder (SAE) model for predicting the antigenic variant of human influenza A(H3N2) viruses based on the hemagglutinin (HA) protein sequences. The model achieved an accuracy of 0.95 in five-fold cross-validations, better than the logistic regression model did. Further analysis of the model shows that most of the active nodes in the hidden layer reflected the combined contribution of multiple residues to antigenic variation. Besides, some features (residues on HA protein) in the input layer were observed to take part in multiple active nodes, such as residue 189, 145 and 156, which were also reported to mostly determine the antigenic variation of influenza A(H3N2) viruses. Overall,this work is not only useful for rapidly identifying antigenic variants in influenza prevention, but also an interesting attempt in inferring the mechanisms of biological process through analysis of SAE model, which may give some insights into interpretation of the deep learning 展开更多
关键词 Stacked auto-encoder Antigenic variatION nfluenza Machine learning
在线阅读 下载PDF
融合变分图自编码器与局部-全局图网络的认知负荷脑电识别模型 被引量:1
11
作者 周天彤 郑妍琪 +2 位作者 魏韬 戴亚康 邹凌 《计算机应用》 北大核心 2025年第6期1849-1857,共9页
针对认知负荷识别模型存在过于依赖手动特征提取、忽视脑电图(EEG)信号的空间信息和无法有效学习图结构数据的问题,提出一种融合变分图自编码器(VGAE)与局部-全局图网络(VLGGNet)的认知负荷EEG识别模型。该模型由时间学习模块和图形学... 针对认知负荷识别模型存在过于依赖手动特征提取、忽视脑电图(EEG)信号的空间信息和无法有效学习图结构数据的问题,提出一种融合变分图自编码器(VGAE)与局部-全局图网络(VLGGNet)的认知负荷EEG识别模型。该模型由时间学习模块和图形学习模块这2个部分组成。首先,使用时间学习模块通过多尺度时间卷积捕捉EEG信号的动态频率表示,并通过空间与通道重建卷积(SCConv)和1×1卷积核级联模块融合多尺度卷积提取的特征;其次,使用图形学习模块将EEG数据定义为局部-全局图,其中,局部图特征提取层将节点属性聚合到一个低维向量,全局图特征提取层通过VGAE重构图结构;最后,对全局图和节点特征向量执行轻量化图卷积操作,由全连接层输出预测结果。通过嵌套交叉验证,实验结果表明,在心算任务(MAT)数据集上,相较于次优的局部-全局图网络(LGGNet),VLGGNet的平均准确率(mAcc)和平均F1分数(mF1)分别提升了4.07和3.86个百分点;在同时任务EEG工作量(STEW)数据集上,相较于表现最好的多尺度时空卷积神经网络(TSception),VLGGNet的mAcc与TSception相同,mF1仅降低了0.01个百分点。可见VLGGNet提高了认知负荷分类的性能,也验证了前额叶和额叶区域与认知负荷状态密切相关。 展开更多
关键词 认知负荷 脑电信号 多尺度时间卷积 变分图自编码器 局部-全局图网络
在线阅读 下载PDF
基于SCADA参量耦合网络变分图自编码的风电机组异常检测方法 被引量:2
12
作者 刘小峰 李俊锋 柏林 《太阳能学报》 北大核心 2025年第5期567-576,共10页
利用风电机组数据采集与监控系统(SCADA)数据监测参量本身数值信息及其相互间的耦合关联性,提出基于多参量耦合关系变分图自编码的风电机组异常检测方法。该方法利用时间序列自适应符号传递熵构建SCADA数据的参量耦合关系网络,设计变分... 利用风电机组数据采集与监控系统(SCADA)数据监测参量本身数值信息及其相互间的耦合关联性,提出基于多参量耦合关系变分图自编码的风电机组异常检测方法。该方法利用时间序列自适应符号传递熵构建SCADA数据的参量耦合关系网络,设计变分图自编码再编码模型对参量耦合关系网络进行编码重构。结合SCADA参量耦合关系网络的编码重构误差构建风电机组的健康状态评估指标,采用支持向量回归的迭代更新法,对机组实时健康阈值进行自适应设置。两个风场的风力发电机组SCADA数据分析结果表明:该文方法充分利用了SCADA数据本身的数值信息及耦合关系结构信息,有效提高了风电机组异常状态检测的准确性及对环境工况的鲁棒性。 展开更多
关键词 风电机组 多参量耦合 变分图自编码 健康指数 异常检测
原文传递
基于专利多属性融合的企业技术竞争对手识别研究——以新能源汽车领域为例 被引量:1
13
作者 冉从敬 冯若静 李旺 《情报理论与实践》 北大核心 2025年第5期91-100,共10页
[目的/意义]通过融合专利文本、IPC分类号、专利引用关系及专利数量,运用自然语言处理与图神经网络技术,提出一种技术竞争对手识别方法,以期实现对企业技术竞争对手的更精确预测。[方法/过程]首先,利用BERT和One-Hot方法分别处理专利文... [目的/意义]通过融合专利文本、IPC分类号、专利引用关系及专利数量,运用自然语言处理与图神经网络技术,提出一种技术竞争对手识别方法,以期实现对企业技术竞争对手的更精确预测。[方法/过程]首先,利用BERT和One-Hot方法分别处理专利文本和IPC分类信息,生成文本特征向量和分类特征向量,并将其拼接为融合向量。其次,基于专利间的引文耦合与共被引关系构建专利引用网络,并采用变分图自编码器(VGAE)模型对融合向量与专利引用网络形成的专利信息网络进行图嵌入学习,得到各专利的低维嵌入表示。最后,整合企业所有专利的嵌入表示,形成企业向量,并计算企业间的相似度值和企业降维特征向量,结合企业专利数量、企业相似度和降维特征向量,绘制技术竞争气泡图,从而识别企业的技术竞争对手。[结果/结论]以比亚迪新能源汽车为例,最终识别出吉利汽车、奇瑞汽车等技术竞争对手,此方法为企业制定技术竞争策略提供了参考依据。[局限]未充分考虑时间因素对专利引用关系演变和技术发展趋势的影响,这是未来的改进方向之一。 展开更多
关键词 多属性融合 技术竞争对手 专利分析 企业相似度 变分图自编码器
原文传递
面向有向图的特征提取与表征学习研究
14
作者 谭郁松 张钰森 蹇松雷 《计算机工程与应用》 北大核心 2025年第3期234-241,共8页
图数据是一种用于描述不同实体之间关联关系的重要数据形式。有向图作为一种特殊形式,不仅能描述实体关联,还能明确关系的方向,提供了更精细和详实的描述。因此,有向图的特征提取和表征学习对于深入理解复杂系统具有至关重要的意义。然... 图数据是一种用于描述不同实体之间关联关系的重要数据形式。有向图作为一种特殊形式,不仅能描述实体关联,还能明确关系的方向,提供了更精细和详实的描述。因此,有向图的特征提取和表征学习对于深入理解复杂系统具有至关重要的意义。然而,现有方法在有效提取有向图的方向信息方面仍然存在挑战,主要依赖于节点的局部信息进行特征提取,难以充分利用有向边蕴含的方向信息。为解决这一问题,提出了一种名为变分有向图自编码器(variational directed graph autoencoder,VDGAE)的无监督表示学习方法。VDGAE通过关联矩阵来建模节点与边之间的关联关系,通过计算节点与边之间的亲和力,来重构输入有向图,从而实现无监督表征学习。基于此,VDGAE能够同时为输入有向图学习节点与边的表征,充分捕获有向图的结构信息和方向信息并嵌入至节点与边的表征向量中,使得有向图能够被更准确地表征。实验结果表明,相较于11个基准方法,VDGAE在5个数据集上节点分类任务均优于基准方法,提升了11.96%的预测精度,充分验证了其有效性。 展开更多
关键词 有向图 表征学习 关联矩阵 图神经网络 变分自编码器
在线阅读 下载PDF
基于姿态-场景特征的视频异常检测研究
15
作者 陈志刚 张心宇 +1 位作者 刘凌枫 李航 《华中科技大学学报(自然科学版)》 北大核心 2025年第10期8-14,共7页
利用姿态骨骼点的低维和高度结构化特点,采用图卷积神经网络对姿态特征进行层次化和结构化处理,从个体姿态和个体之间的相互作用两方面进行分析;同时结合场景的丰富语义信息,引入条件变分自编码器进行异常检测.条件变分自编码器通过编... 利用姿态骨骼点的低维和高度结构化特点,采用图卷积神经网络对姿态特征进行层次化和结构化处理,从个体姿态和个体之间的相互作用两方面进行分析;同时结合场景的丰富语义信息,引入条件变分自编码器进行异常检测.条件变分自编码器通过编码场景图像和姿态特征映射,生成姿态-场景条件特征图,增强了场景特征与姿态特征的融合,提升了异常检测的准确性.该模型有效整合了姿态和场景特征,显著增强了在复杂环境下的异常行为检测能力.在上海科技、香港中文大学大道和西北工业大学校园三个异常检测数据集上,本文模型分别达到了84.3%,87.2%和69.7%的接收者操作特征曲线的曲线下面积(AUC)表现,展现了与现有技术相比的优越性. 展开更多
关键词 姿态估计 图卷积神经网络 条件变分自编码器 分层结构 视频异常检测
原文传递
基于图变分自编码器的多模态特征融合加密流量分类模型
16
作者 韩益亮 彭一轩 +1 位作者 吴旭光 李鱼 《信息网络安全》 北大核心 2025年第12期1914-1926,共13页
随着流量加密技术的广泛应用与不断演进,如何提升加密流量分类的精度,成为保障网络安全与高效管理的关键技术挑战。现有的加密流量分类方法采用相同的机制提取包头和负载特征,无法充分利用包头和负载中具有不同特性的有效信息,且忽视了... 随着流量加密技术的广泛应用与不断演进,如何提升加密流量分类的精度,成为保障网络安全与高效管理的关键技术挑战。现有的加密流量分类方法采用相同的机制提取包头和负载特征,无法充分利用包头和负载中具有不同特性的有效信息,且忽视了密文的随机特征,导致分类精度遇到性能瓶颈。文章提出一种基于图变分自编码器的多模态特征融合加密流量分类模型(MFF-VGAE),该模型运用多模态特征融合技术分别提取并融合包头和负载中的有效信息。此外,该模型使用图变分自编码器,将样本特征映射到服从正态分布的随机空间,在学习密文数据概率分布的同时生成增强样本。通过训练,该模型在提升分类精度与鲁棒性的同时,降低了计算量。实验结果表明,文章所提出的模型在ISCX VPN-nonVPN和ISCX Tor-nonTor数据集上,相较于当前主流基线模型表现更优,且模型计算量相较于使用类似结构的TFE-GNN下降了9.1%。 展开更多
关键词 加密流量分类 图神经网络 图变分自编码器
在线阅读 下载PDF
基于变分图自编码器的多变量时序数据异常检测
17
作者 尹文萃 谢平 +2 位作者 叶成绪 韩佳新 夏星 《计算机科学》 北大核心 2025年第S1期688-695,共8页
多变量时序数据异常检测指识别多变量时序数据中的异常值。为解决多变量时序数据间的复杂性和内部变量间特征依赖的问题,文中提出了一种基于变分图自编码器的多变量时序数据异常检测方法。首先,使用滑动窗口提取变量嵌入特征,并基于特... 多变量时序数据异常检测指识别多变量时序数据中的异常值。为解决多变量时序数据间的复杂性和内部变量间特征依赖的问题,文中提出了一种基于变分图自编码器的多变量时序数据异常检测方法。首先,使用滑动窗口提取变量嵌入特征,并基于特征相似性构建结构关联关系图,然后将该多变量时序数据间的关联关系通过变分图自编码器进行优化,提高多变量时序数据的结构特征表征能力;其次,通过多头注意力机制提升多变量时序数据不同通道间的特征表示,并和多变量时序数据结构信息进行融合;最后,采用极值理论选取阈值并进行无监督异常检测。实验结果表明,所提模型在SWaT,MSL等数据集上F1分数达到了81.43%和99.67%的结果。 展开更多
关键词 异常检测 多变量时序数据 图结构学习 变分图自编码器
在线阅读 下载PDF
深度图网络驱动的核电系统多级异常检测方法
18
作者 张乐 成玮 +5 位作者 张硕 陈雪峰 常丰田 洪郡滢 马颖菲 彭将 《振动.测试与诊断》 北大核心 2025年第1期88-94,202,共8页
针对深度学习方法未明确学习变量间关系结构、系统异常难以准确检测的问题,提出一种深度图网络驱动的核电系统多级异常检测方法。首先,利用无监督图对比学习方法挖掘系统变量时间序列间相关性,构建与核电系统物理结构匹配的可解释性图结... 针对深度学习方法未明确学习变量间关系结构、系统异常难以准确检测的问题,提出一种深度图网络驱动的核电系统多级异常检测方法。首先,利用无监督图对比学习方法挖掘系统变量时间序列间相关性,构建与核电系统物理结构匹配的可解释性图结构;其次,基于变分图自编码器重构系统图结构,以重构误差来表征系统运行状态,从系统层面防止非线性突发行为带来的安全性问题;然后,通过半监督图卷积节点分类模型识别系统内部各变量运行状态,实现测点级异常检测;最后,以PCTranACP100仿真机2种基准事故工况数据、国内某核电机组循环水系统监测数据来验证提出方法的有效性。结果表明,系统级异常检测准确率达到93%,86%和90%,证明所提出方法能够准确检测出系统异常情况,可降低电厂单一仪表异常触发的非计划停机概率。 展开更多
关键词 核电系统 无监督深度图学习 可解释性图结构 多级异常检测 变分图自编码器
在线阅读 下载PDF
基于图潜向量分布学习的图过采样方法
19
作者 任博 董明刚 +1 位作者 于扬 卢贤睿 《计算机科学与探索》 北大核心 2025年第7期1808-1819,共12页
现实世界中许多图数据存在类别分布不平衡的问题,其通常表现在节点、边和图三个级别。常用的基于过采样的图级不平衡处理方法,因样本缺乏多样性,会导致模型过拟合。针对该问题,提出一种图潜向量分布学习的图过采样方法(GLRD-GAN)。提出... 现实世界中许多图数据存在类别分布不平衡的问题,其通常表现在节点、边和图三个级别。常用的基于过采样的图级不平衡处理方法,因样本缺乏多样性,会导致模型过拟合。针对该问题,提出一种图潜向量分布学习的图过采样方法(GLRD-GAN)。提出一种图潜向量分布学习方法,利用预训练的图变分自编码器(VGAE)和全连接神经网络学习少数类图样本在低维空间内的潜向量分布,在该分布上随机采样潜向量信息并与原少数类潜向量融合,保证了少数类潜向量的多样性。设计了一种基于双解码器的图样本生成器,经预训练的内积解码器和图卷积解码器充分利用采样的潜向量来分别生成图数据的拓扑结构和节点特征。通过GAN判别器检测生成样本的真伪和类别,监督生成样本的有效性,实现多样性的少数类图样本生成。在5个具有代表性的长尾图数据集上进行了对比实验和可视化观察,结果表明提出的基于图潜向量分布学习的图过采样方法在Acc和F1值上较其他方法平均高出1%~4%,且能够生成有效的少数类图样本。 展开更多
关键词 长尾问题 图变分自编码器 图潜向量 生成对抗网络
在线阅读 下载PDF
基于改进MAML与GVAE的容量约束车辆路径问题求解方法
20
作者 张焱鹏 赵于前 +3 位作者 张帆 丘腾海 桂瑰 余伶俐 《计算机应用》 北大核心 2025年第11期3642-3648,共7页
基于深度强化学习(DRL)的车辆路径规划方法以其求解速度快、端到端等优势受到广泛关注,但现有方法大多局限于对节点分布均匀和数量固定问题的求解,当面临节点不平均分布以及节点数变化的情况时,求解效果有所下降。针对这一问题,提出一... 基于深度强化学习(DRL)的车辆路径规划方法以其求解速度快、端到端等优势受到广泛关注,但现有方法大多局限于对节点分布均匀和数量固定问题的求解,当面临节点不平均分布以及节点数变化的情况时,求解效果有所下降。针对这一问题,提出一种基于改进模型无关的元学习(MAML)和图变分自编码器(GVAE)的元学习框架,旨在通过元训练得到一个良好的初始化模型,并针对数据集外分布的任务进行快速微调,从而提升模型的泛化性能;此外利用GVAE初始化元学习框架的参数,以进一步提升元学习效果。实验结果表明,所提方法可以较好地处理不同节点分布情况下的车辆路径问题(VRP),在面对不同节点数量问题时也有较好的表现,在5种任务上的平均偏差率较未使用元学习的方法降低了0.45个百分点。利用元学习框架可有效提升强化学习的效果,与先进求解器相比,所提框架在保证成本接近的前提下可有效缩短求解时间。 展开更多
关键词 车辆路径问题 深度强化学习 元学习 图变分自编码器 组合优化 策略梯度方法
在线阅读 下载PDF
上一页 1 2 8 下一页 到第
使用帮助 返回顶部