期刊文献+
共找到333篇文章
< 1 2 17 >
每页显示 20 50 100
A Robust GNSS Navigation Filter Based on Maximum Correntropy Criterion with Variational Bayesian for Adaptivity 被引量:1
1
作者 Dah-Jing Jwo Yi Chang Ta-Shun Cho 《Computer Modeling in Engineering & Sciences》 2025年第3期2771-2789,共19页
In this paper,an advanced satellite navigation filter design,referred to as the Variational Bayesian Maximum Correntropy Extended Kalman Filter(VBMCEKF),is introduced to enhance robustness and adaptability in scenario... In this paper,an advanced satellite navigation filter design,referred to as the Variational Bayesian Maximum Correntropy Extended Kalman Filter(VBMCEKF),is introduced to enhance robustness and adaptability in scenarios with non-Gaussian noise and heavy-tailed outliers.The proposed design modifies the extended Kalman filter(EKF)for the global navigation satellite system(GNSS),integrating the maximum correntropy criterion(MCC)and the variational Bayesian(VB)method.This adaptive algorithm effectively reduces non-line-of-sight(NLOS)reception contamination and improves estimation accuracy,particularly in time-varying GNSS measurements.Experimental results show that the proposed method significantly outperforms conventional approaches in estimation accuracy under heavy-tailed outliers and non-Gaussian noise.By combining MCC with VB approximation for real-time noise covariance estimation using fixed-point iteration,the VBMCEKF achieves superior filtering performance in challenging GNSS conditions.The method’s adaptability and precision make it ideal for improving satellite navigation performance in stochastic environments. 展开更多
关键词 Maximum correntropy criterion variational bayesian extended Kalman filter GNSS
在线阅读 下载PDF
A two-step variational Bayesian Monte Carlo approach for model updating under observation uncertainty
2
作者 Yanhe Tao Qintao Guo +2 位作者 Jin Zhou Jiaqian Ma Wenxing Ge 《Acta Mechanica Sinica》 2025年第5期175-189,共15页
Engineering tests can yield inaccurate data due to instrument errors,human factors,and environmental interference,introducing uncertainty in numerical model updating.This study employs the probability-box(p-box)method... Engineering tests can yield inaccurate data due to instrument errors,human factors,and environmental interference,introducing uncertainty in numerical model updating.This study employs the probability-box(p-box)method for representing observational uncertainty and develops a two-step approximate Bayesian computation(ABC)framework using time-series data.Within the ABC framework,Euclidean and Bhattacharyya distances are employed as uncertainty quantification metrics to delineate approximate likelihood functions in the initial and subsequent steps,respectively.A novel variational Bayesian Monte Carlo method is introduced to efficiently apply the ABC framework amidst observational uncertainty,resulting in rapid convergence and accurate parameter estimation with minimal iterations.The efficacy of the proposed updating strategy is validated by its application to a shear frame model excited by seismic wave and an aviation pump force sensor for thermal output analysis.The results affirm the efficiency,robustness,and practical applicability of the proposed method. 展开更多
关键词 Model updating Approximate bayesian computation Observation uncertainty Bhattacharyya distance Thermal output variational bayesian
原文传递
Distributed bearing-only target tracking algorithm based on variational Bayesian inference under random measurement anomalies
3
作者 YANG Haoran CHEN Yu +1 位作者 HU Zhentao JIA Haoqian 《High Technology Letters》 2025年第1期86-94,共9页
A distributed bearing-only target tracking algorithm based on variational Bayesian inference(VBI)under random measurement anomalies is proposed for the problem of adverse effect of random measurement anomalies on the ... A distributed bearing-only target tracking algorithm based on variational Bayesian inference(VBI)under random measurement anomalies is proposed for the problem of adverse effect of random measurement anomalies on the state estimation accuracy of moving targets in bearing-only tracking scenarios.Firstly,the measurement information of each sensor is complemented by using triangulation under the distributed framework.Secondly,the Student-t distribution is selected to model the measurement likelihood probability density function,and the joint posteriori probability density function of the estimated variables is approximately decoupled by VBI.Finally,the estimation results of each local filter are sent to the fusion center and fed back to each local filter.The simulation results show that the proposed distributed bearing-only target tracking algorithm based on VBI in the presence of abnormal measurement noise comprehensively considers the influence of system nonlinearity and random anomaly of measurement noise,and has higher estimation accuracy and robustness than other existing algorithms in the above scenarios. 展开更多
关键词 bearing-only target tracking(BOTT) variational bayesian inference(vbI) Student-t distribution cubature Kalman filter(CKF) distributed fusion
在线阅读 下载PDF
Spatially Constrained Variational Autoencoder for Geochemical Data Denoising and Uncertainty Quantification
4
作者 Dazheng Huang Renguang Zuo +1 位作者 Jian Wang Raimon Tolosana-Delgado 《Journal of Earth Science》 2025年第5期2317-2336,共20页
Geochemical survey data are essential across Earth Science disciplines but are often affected by noise,which can obscure important geological signals and compromise subsequent prediction and interpretation.Quantifying... Geochemical survey data are essential across Earth Science disciplines but are often affected by noise,which can obscure important geological signals and compromise subsequent prediction and interpretation.Quantifying prediction uncertainty is hence crucial for robust geoscientific decision-making.This study proposes a novel deep learning framework,the Spatially Constrained Variational Autoencoder(SC-VAE),for denoising geochemical survey data with integrated uncertainty quantification.The SC-VAE incorporates spatial regularization,which enforces spatial coherence by modeling inter-sample relationships directly within the latent space.The performance of the SC-VAE was systematically evaluated against a standard Variational Autoencoder(VAE)using geochemical data from the gold polymetallic district in the northwestern part of Sichuan Province,China.Both models were optimized using Bayesian optimization,with objective functions specifically designed to maintain essential geostatistical characteristics.Evaluation metrics include variogram analysis,quantitative measures of spatial interpolation accuracy,visual assessment of denoised maps,and statistical analysis of data distributions,as well as decomposition of uncertainties.Results show that the SC-VAE achieves superior noise suppression and better preservation of spatial structure compared to the standard VAE,as demonstrated by a significant reduction in the variogram nugget effect and an increased partial sill.The SC-VAE produces denoised maps with clearer anomaly delineation and more regularized data distributions,effectively mitigating outliers and reducing kurtosis.Additionally,it delivers improved interpolation accuracy and spatially explicit uncertainty estimates,facilitating more reliable and interpretable assessments of prediction confidence.The SC-VAE framework thus provides a robust,geostatistically informed solution for enhancing the quality and interpretability of geochemical data,with broad applicability in mineral exploration,environmental geochemistry,and other Earth Science domains. 展开更多
关键词 geochemical data denoising spatially constrained variational autoencoder GEOSTATISTICS bayesian optimization uncertainty analysis GEOCHEMISTRY
原文传递
vbICA方法用于GNSS坐标序列共模误差提取研究 被引量:1
5
作者 张双成 李军 +4 位作者 安宁康 冯智杰 吕佳明 王杰 叶志磊 《大地测量与地球动力学》 CSCD 北大核心 2024年第5期450-455,共6页
全球导航卫星系统(global navigation satellite system,GNSS)坐标序列精度主要受共模误差(common mode error,CME)影响。为提高GNSS坐标序列精度,采用变分贝叶斯独立分量分析方法(variational Bayesian independent component analysis... 全球导航卫星系统(global navigation satellite system,GNSS)坐标序列精度主要受共模误差(common mode error,CME)影响。为提高GNSS坐标序列精度,采用变分贝叶斯独立分量分析方法(variational Bayesian independent component analysis,vbICA)提取实验区20个GNSS测站坐标序列的CME,并对比分析vbICA与主成分分析(principal component analysis,PCA)和独立分量分析(independent component analysis,ICA)的滤波性能。结果表明,vbICA滤波效果优于PCA和ICA;经vbICA滤波后,E、N、U方向坐标残差序列均方根(RMS)平均降低36.57%、31.63%、10.97%,距离相关系数平均降低60.53%、56.84%、25.80%;扣除CME后,GNSS速度场估计更加可靠和精确,可有效提高GNSS坐标序列精度,为地球动力学研究提供可靠的数据支撑。 展开更多
关键词 GNSS坐标序列 变分贝叶斯独立分量分析 共模误差 距离相关系数 速度场
在线阅读 下载PDF
环境激励下的Bayesian SFFT模态参数识别法及不确定性量化研究
6
作者 郭琦 张卓 蒲广宁 《振动与冲击》 EI CSCD 北大核心 2024年第23期194-202,共9页
针对传统Bayesian模态参数识别方法存在识别结果不确定性和量化指标单一的问题,提出了贝叶斯缩放快速傅里叶变换(Bayesian scaled fast Fourier transform,Bayesian SFFT)模态参数识别法,通过求解四维数值的优化,得到模态参数的最佳估值... 针对传统Bayesian模态参数识别方法存在识别结果不确定性和量化指标单一的问题,提出了贝叶斯缩放快速傅里叶变换(Bayesian scaled fast Fourier transform,Bayesian SFFT)模态参数识别法,通过求解四维数值的优化,得到模态参数的最佳估值,并采用蒙特卡罗抽样的方法得到后验协方差矩阵和信息熵,实现对识别结果进行双重不确定性量化的目的。最后,通过数值模拟与工程应用验证了该方法的有效性,并研究了频带宽度系数k对识别结果的影响以及对比了变异系数与信息熵的量化效果。结果表明,将频带宽度系数k限制在7~9之间能够确保误差与不确定性的平衡;在阻尼比识别结果的量化中,信息熵的量化效果优于变异系数的量化效果。 展开更多
关键词 模态参数识别 不确定性量化 贝叶斯缩放快速傅里叶变换(bayesian SFFT) 蒙特卡罗抽样 频带宽度系数 变异系数 信息熵
在线阅读 下载PDF
Variational Bayesian labeled multi-Bernoulli filter with unknown sensor noise statistics 被引量:5
7
作者 Qiu Hao Huang Gaoming Gao Jun 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2016年第5期1378-1384,共7页
It is difficult to build accurate model for measurement noise covariance in complex backgrounds. For the scenarios of unknown sensor noise variances, an adaptive multi-target tracking algorithm based on labeled random... It is difficult to build accurate model for measurement noise covariance in complex backgrounds. For the scenarios of unknown sensor noise variances, an adaptive multi-target tracking algorithm based on labeled random finite set and variational Bayesian (VB) approximation is proposed. The variational approximation technique is introduced to the labeled multi-Bernoulli (LMB) filter to jointly estimate the states of targets and sensor noise variances. Simulation results show that the proposed method can give unbiased estimation of cardinality and has better performance than the VB probability hypothesis density (VB-PHD) filter and the VB cardinality balanced multi-target multi-Bernoulli (VB-CBMeMBer) filter in harsh situations. The simulations also confirm the robustness of the proposed method against the time-varying noise variances. The computational complexity of proposed method is higher than the VB-PHD and VB-CBMeMBer in extreme cases, while the mean execution times of the three methods are close when targets are well separated. 展开更多
关键词 Labeled random finite set Multi-Bernoulli filter Multi-target tracking Parameter estimation variational bayesian approximation
原文传递
Robust Variational Bayesian Adaptive Cubature Kalman Filtering Algorithm for Simultaneous Localization and Mapping with Heavy-Tailed Noise 被引量:4
8
作者 ZHANG Zhuqing DONG Pengu +2 位作者 TUO Hongya LIU Guangjun JIA He 《Journal of Shanghai Jiaotong university(Science)》 EI 2020年第1期76-87,共12页
Simultaneous localization and mapping(SLAM)has been applied across a wide range of areas from robotics to automatic pilot.Most of the SLAM algorithms are based on the assumption that the noise is timeinvariant Gaussia... Simultaneous localization and mapping(SLAM)has been applied across a wide range of areas from robotics to automatic pilot.Most of the SLAM algorithms are based on the assumption that the noise is timeinvariant Gaussian distribution.In some cases,this assumption no longer holds and the performance of the traditional SLAM algorithms declines.In this paper,we present a robust SLAM algorithm based on variational Bayes method by modelling the observation noise as inverse-Wishart distribution with "harmonic mean".Besides,cubature integration is utilized to solve the problem of nonlinear system.The proposed algorithm can effectively solve the problem of filtering divergence for traditional filtering algorithm when suffering the time-variant observation noise,especially for heavy-tai led noise.To validate the algorithm,we compare it with other t raditional filtering algorithms.The results show the effectiveness of the algorithm. 展开更多
关键词 SIMULTANEOUS localization and mapping(SLAM) variational bayesian(vb) heavy-tailed noise ROBUST estimation
原文传递
Variational Bayesian data analysis on manifold 被引量:2
9
作者 Yang MING 《Control Theory and Technology》 EI CSCD 2018年第3期212-220,共9页
In this paper, variational inference is studied on manifolds with certain metrics. To solve the problem, the analysis is first proposed for the variational Bayesian on Lie group, and then extended to the manifold that... In this paper, variational inference is studied on manifolds with certain metrics. To solve the problem, the analysis is first proposed for the variational Bayesian on Lie group, and then extended to the manifold that is approximated by Lie groups. Then the convergence of the proposed algorithm with respect to the manifold metric is proved in two iterative processes: variational Bayesian expectation (VB-F) step and variational Bayesian maximum (VB-M) step. Moreover, the effective of different metrics for Bayesian analysis is discussed. 展开更多
关键词 variational bayesian Lie group data analysis
原文传递
Variational Bayesian Kalman filter using natural gradient 被引量:3
10
作者 Yumei HU Xuezhi WANG +2 位作者 Quan PAN Zhentao HU Bill MORAN 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2022年第5期1-10,共10页
We propose a technique based on the natural gradient method for variational lower bound maximization for a variational Bayesian Kalman filter.The natural gradient approach is applied to the Kullback-Leibler divergence... We propose a technique based on the natural gradient method for variational lower bound maximization for a variational Bayesian Kalman filter.The natural gradient approach is applied to the Kullback-Leibler divergence between the parameterized variational distribution and the posterior density of interest.Using a Gaussian assumption for the parametrized variational distribution,we obtain a closed-form iterative procedure for the Kullback-Leibler divergence minimization,producing estimates of the variational hyper-parameters of state estimation and the associated error covariance.Simulation results in both a Doppler radar tracking scenario and a bearing-only tracking scenario are presented,showing that the proposed natural gradient method outperforms existing methods which are based on other linearization techniques in terms of tracking accuracy. 展开更多
关键词 Kullback-Leibler divergence Natural gradient Nonlinear Kalman filter Target tracking variational bayesian optimization
原文传递
Variational Bayesian Based IMM Robust GPS Navigation Filter 被引量:3
11
作者 Dah-Jing Jwo Wei-Yeh Chang 《Computers, Materials & Continua》 SCIE EI 2022年第7期755-773,共19页
This paper investigates the navigational performance of Global Positioning System(GPS)using the variational Bayesian(VB)based robust filter with interacting multiple model(IMM)adaptation as the navigation processor.Th... This paper investigates the navigational performance of Global Positioning System(GPS)using the variational Bayesian(VB)based robust filter with interacting multiple model(IMM)adaptation as the navigation processor.The performance of the state estimation for GPS navigation processing using the family ofKalman filter(KF)may be degraded due to the fact that in practical situations the statistics of measurement noise might change.In the proposed algorithm,the adaptivity is achieved by estimating the timevarying noise covariance matrices based onVB learning using the probabilistic approach,where in each update step,both the system state and time-varying measurement noise were recognized as random variables to be estimated.The estimation is iterated recursively at each time to approximate the real joint posterior distribution of state using the VB learning.One of the two major classical adaptive Kalman filter(AKF)approaches that have been proposed for tuning the noise covariance matrices is the multiple model adaptive estimate(MMAE).The IMM algorithm uses two or more filters to process in parallel,where each filter corresponds to a different dynamic or measurement model.The robust Huber’s M-estimation-based extended Kalman filter(HEKF)algorithm integrates both merits of the Huber M-estimation methodology and EKF.The robustness is enhanced by modifying the filter update based on Huber’s M-estimation method in the filtering framework.The proposed algorithm,referred to as the interactive multi-model based variational Bayesian HEKF(IMM-VBHEKF),provides an effective way for effectively handling the errors with time-varying and outlying property of non-Gaussian interference errors,such as the multipath effect.Illustrative examples are given to demonstrate the navigation performance enhancement in terms of adaptivity and robustness at the expense of acceptable additional execution time. 展开更多
关键词 GPS variational bayesian Huber’sM-estimation interacting multiple model adaptive OUTLIER MULTIPATH
在线阅读 下载PDF
Variational Inference Based Kernel Dynamic Bayesian Networks for Construction of Prediction Intervals for Industrial Time Series With Incomplete Input 被引量:2
12
作者 Long Chen Linqing Wang +2 位作者 Zhongyang Han Jun Zhao Wei Wang 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2020年第5期1437-1445,共9页
Prediction intervals(PIs)for industrial time series can provide useful guidance for workers.Given that the failure of industrial sensors may cause the missing point in inputs,the existing kernel dynamic Bayesian netwo... Prediction intervals(PIs)for industrial time series can provide useful guidance for workers.Given that the failure of industrial sensors may cause the missing point in inputs,the existing kernel dynamic Bayesian networks(KDBN),serving as an effective method for PIs construction,suffer from high computational load using the stochastic algorithm for inference.This study proposes a variational inference method for the KDBN for the purpose of fast inference,which avoids the timeconsuming stochastic sampling.The proposed algorithm contains two stages.The first stage involves the inference of the missing inputs by using a local linearization based variational inference,and based on the computed posterior distributions over the missing inputs the second stage sees a Gaussian approximation for probability over the nodes in future time slices.To verify the effectiveness of the proposed method,a synthetic dataset and a practical dataset of generation flow of blast furnace gas(BFG)are employed with different ratios of missing inputs.The experimental results indicate that the proposed method can provide reliable PIs for the generation flow of BFG and it exhibits shorter computing time than the stochastic based one. 展开更多
关键词 Industrial time series kernel dynamic bayesian networks(KDBN) prediction intervals(PIs) variational inference
在线阅读 下载PDF
Distributed adaptive Kalman filter based on variational Bayesian technique 被引量:1
13
作者 Chen HU Xiaoming HU Yiguang HONG 《Control Theory and Technology》 EI CSCD 2019年第1期37-47,共11页
In this paper, distributed Kalman filter design is studied for linear dynamics with unknown measurement noise variance, which modeled by Wishart distribution. To solve the problem in a multi-agent network, a distribut... In this paper, distributed Kalman filter design is studied for linear dynamics with unknown measurement noise variance, which modeled by Wishart distribution. To solve the problem in a multi-agent network, a distributed adaptive Kalman filter is proposed with the help of variational Bayesian, where the posterior distribution of joint state and noise variance is approximated by a free-form distribution. The con vergence of the proposed algorithm is proved in two main steps: n oise statistics is estimated, where each age nt only use its local information in variational Bayesian expectation (VB-E) step, and state is estimated by a consensus algorithm in variational Bayesian maximum (VB-M) step. Finally, a distributed target tracking problem is investigated with simulations for illustration. 展开更多
关键词 Distributed Kalman filter adaptive filter multi-agent system variational bayesian
原文传递
Skew t Distribution-Based Nonlinear Filter with Asymmetric Measurement Noise Using Variational Bayesian Inference 被引量:1
14
作者 Chen Xu Yawen Mao +2 位作者 Hongtian Chen Hongfeng Tao Fei Liu 《Computer Modeling in Engineering & Sciences》 SCIE EI 2022年第4期349-364,共16页
This paper is focused on the state estimation problem for nonlinear systems with unknown statistics of measurement noise.Based on the cubature Kalman filter,we propose a new nonlinear filtering algorithm that employs ... This paper is focused on the state estimation problem for nonlinear systems with unknown statistics of measurement noise.Based on the cubature Kalman filter,we propose a new nonlinear filtering algorithm that employs a skew t distribution to characterize the asymmetry of the measurement noise.The system states and the statistics of skew t noise distribution,including the shape matrix,the scale matrix,and the degree of freedom(DOF)are estimated jointly by employing variational Bayesian(VB)inference.The proposed method is validated in a target tracking example.Results of the simulation indicate that the proposed nonlinear filter can perform satisfactorily in the presence of unknown statistics of measurement noise and outperform than the existing state-of-the-art nonlinear filters. 展开更多
关键词 Nonlinear filter asymmetric measurement noise skew t distribution unknown noise statistics variational bayesian inference
在线阅读 下载PDF
Robust SLAM localization method based on improved variational Bayesian filtering 被引量:1
15
作者 Zhai Hongqi Wang Lihui +1 位作者 Cai Tijing Meng Qian 《Journal of Southeast University(English Edition)》 EI CAS 2022年第4期340-349,共10页
Aimed at the problem that the state estimation in the measurement update of the simultaneous localization and mapping(SLAM)method is incorrect or even not convergent because of the non-Gaussian measurement noise,outli... Aimed at the problem that the state estimation in the measurement update of the simultaneous localization and mapping(SLAM)method is incorrect or even not convergent because of the non-Gaussian measurement noise,outliers,or unknown and time-varying noise statistical characteristics,a robust SLAM method based on the improved variational Bayesian adaptive Kalman filtering(IVBAKF)is proposed.First,the measurement noise covariance is estimated using the variable Bayesian adaptive filtering algorithm.Then,the estimated covariance matrix is robustly processed through the weight function constructed in the form of a reweighted average.Finally,the system updates are iterated multiple times to further gradually correct the state estimation error.Furthermore,to observe features at different depths,a feature measurement model containing depth parameters is constructed.Experimental results show that when the measurement noise does not obey the Gaussian distribution and there are outliers in the measurement information,compared with the variational Bayesian adaptive SLAM method,the positioning accuracy of the proposed method is improved by 17.23%,20.46%,and 17.76%,which has better applicability and robustness to environmental disturbance. 展开更多
关键词 underwater navigation and positioning non-Gaussian distribution time-varying noise variational bayesian method simultaneous localization and mapping(SLAM)
在线阅读 下载PDF
Forward Affine Point Set Matching Under Variational Bayesian Framework 被引量:1
16
作者 QU Han-Bing CHEN Xi +1 位作者 WANG Song-Tao YU Ming 《自动化学报》 EI CSCD 北大核心 2015年第8期1482-1494,共13页
关键词 贝叶斯 点集 匹配 仿射 框架 变分 逼近算法 线性变换
在线阅读 下载PDF
Astronomical image restoration using variational Bayesian blind deconvolution
17
作者 Xiaoping Shi Rui Guo +1 位作者 Yi Zhu Zicai Wang 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2017年第6期1236-1247,共12页
An algorithm is presented for image prior combinations based blind deconvolution and applied to astronomical images.Using a hierarchical Bayesian framework, the unknown original image and all required algorithmic para... An algorithm is presented for image prior combinations based blind deconvolution and applied to astronomical images.Using a hierarchical Bayesian framework, the unknown original image and all required algorithmic parameters are estimated simultaneously. Through utilization of variational Bayesian analysis,approximations of the posterior distributions on each unknown are obtained by minimizing the Kullback-Leibler(KL) distance, thus providing uncertainties of the estimates during the restoration process. Experimental results on both synthetic images and real astronomical images demonstrate that the proposed approaches compare favorably to other state-of-the-art reconstruction methods. 展开更多
关键词 blind deconvolution variational bayesian model com bination astronomical image processing
在线阅读 下载PDF
Gridless Variational Bayesian Inference of Line Spectral from Quantized Samples
18
作者 Jiang Zhu Qi Zhang Xiangming Meng 《China Communications》 SCIE CSCD 2021年第10期77-95,共19页
Efficient estimation of line spectral from quantized samples is of significant importance in information theory and signal processing,e.g.,channel estimation in energy efficient massive MIMO systems and direction of a... Efficient estimation of line spectral from quantized samples is of significant importance in information theory and signal processing,e.g.,channel estimation in energy efficient massive MIMO systems and direction of arrival estimation.The goal of this paper is to recover the line spectral as well as its corresponding parameters including the model order,frequencies and amplitudes from heavily quantized samples.To this end,we propose an efficient gridless Bayesian algorithm named VALSE-EP,which is a combination of the high resolution and low complexity gridless variational line spectral estimation(VALSE)and expectation propagation(EP).The basic idea of VALSE-EP is to iteratively approximate the challenging quantized model of line spectral estimation as a sequence of simple pseudo unquantized models,where VALSE is applied.Moreover,to obtain a benchmark of the performance of the proposed algorithm,the Cram′er Rao bound(CRB)is derived.Finally,numerical experiments on both synthetic and real data are performed,demonstrating the near CRB performance of the proposed VALSE-EP for line spectral estimation from quantized samples. 展开更多
关键词 variational bayesian inference expectation propagation QUANTIZATION line spectral estimation MMSE gridless
在线阅读 下载PDF
Adaptive cubature Kalman filter based on variational Bayesian inference under measurement uncertainty
19
作者 HU Zhentao JIA Haoqian GONG Delong 《High Technology Letters》 EI CAS 2022年第4期354-362,共9页
A novel variational Bayesian inference based on adaptive cubature Kalman filter(VBACKF)algorithm is proposed for the problem of state estimation in a target tracking system with time-varying measurement noise and rand... A novel variational Bayesian inference based on adaptive cubature Kalman filter(VBACKF)algorithm is proposed for the problem of state estimation in a target tracking system with time-varying measurement noise and random measurement losses.Firstly,the Inverse-Wishart(IW)distribution is chosen to model the covariance matrix of time-varying measurement noise in the cubature Kalman filter framework.Secondly,the Bernoulli random variable is introduced as the judgement factor of the measurement losses,and the Beta distribution is selected as the conjugate prior distribution of measurement loss probability to ensure that the posterior distribution and prior distribution have the same function form.Finally,the joint posterior probability density function of the estimated variables is approximately decoupled by the variational Bayesian inference,and the fixed-point iteration approach is used to update the estimated variables.The simulation results show that the proposed VBACKF algorithm considers the comprehensive effects of system nonlinearity,time-varying measurement noise and unknown measurement loss probability,moreover,effectively improves the accuracy of target state estimation in complex scene. 展开更多
关键词 variational bayesian inference cubature Kalman filter(CKF) measurement uncertainty Inverse-Wishart(IW)distribution
在线阅读 下载PDF
Gaussian-Student's t mixture distribution PHD robust filtering algorithm based on variational Bayesian inference
20
作者 HU Zhentao YANG Linlin +1 位作者 HU Yumei YANG Shibo 《High Technology Letters》 EI CAS 2022年第2期181-189,共9页
Aiming at the problem of filtering precision degradation caused by the random outliers of process noise and measurement noise in multi-target tracking(MTT) system,a new Gaussian-Student’s t mixture distribution proba... Aiming at the problem of filtering precision degradation caused by the random outliers of process noise and measurement noise in multi-target tracking(MTT) system,a new Gaussian-Student’s t mixture distribution probability hypothesis density(PHD) robust filtering algorithm based on variational Bayesian inference(GST-vbPHD) is proposed.Firstly,since it can accurately describe the heavy-tailed characteristics of noise with outliers,Gaussian-Student’s t mixture distribution is employed to model process noise and measurement noise respectively.Then Bernoulli random variable is introduced to correct the likelihood distribution of the mixture probability,leading hierarchical Gaussian distribution constructed by the Gaussian-Student’s t mixture distribution suitable to model non-stationary noise.Finally,the approximate solutions including target weights,measurement noise covariance and state estimation error covariance are obtained according to variational Bayesian inference approach.The simulation results show that,in the heavy-tailed noise environment,the proposed algorithm leads to strong improvements over the traditional PHD filter and the Student’s t distribution PHD filter. 展开更多
关键词 multi-target tracking(MTT) variational bayesian inference Gaussian-Student’s t mixture distribution heavy-tailed noise
在线阅读 下载PDF
上一页 1 2 17 下一页 到第
使用帮助 返回顶部