期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Poisson Image Restoration via Transformed Network
1
作者 XU Xiaoling ZHENG Haiyu +2 位作者 ZHANG Fengqin LI Hechen ZHANG Minghui 《Journal of Shanghai Jiaotong university(Science)》 EI 2021年第6期857-868,共12页
There is a Poisson inverse problem in biomedical imaging,fluorescence microscopy and so on.Since the observed measurements are damaged by a linear operator and further destroyed by Poisson noise,recovering the approxi... There is a Poisson inverse problem in biomedical imaging,fluorescence microscopy and so on.Since the observed measurements are damaged by a linear operator and further destroyed by Poisson noise,recovering the approximate original image is difficult.Motivated by the decouple scheme and the variance-stabilizing transformation(VST)strategy,we propose a method of transformed convolutional neural network(CNN)to restore the observed image.In the network,the Conv-layers play the role of a linear inverse filter and the distribution transformation simultaneously.Furthermore,there is no batch normalization(BN)layer in the residual block of the network,which is devoted to tackling with the non-Gaussian recovery procedure.The proposed method is compared with state-of-the-art Poisson deblurring algorithms,and the experimental results show the effectiveness of the method. 展开更多
关键词 DECONVOLUTION Poisson noise transformed network decouple scheme variance-stabilizing transformation(VST)
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部