A new hybrid method of frequency domain and time domain is developed in this paper to predict the motion responses of a flexibly joint multi-body floating system to irregular waves. The main idea of the method is that...A new hybrid method of frequency domain and time domain is developed in this paper to predict the motion responses of a flexibly joint multi-body floating system to irregular waves. The main idea of the method is that the three-dimensional frequency method is used to obtain the hydrodynamic coefficients and the response equations are solved in time domain step by step. All the forces can be obtained at the same time. The motions and nonlinear mooring forces of a box type six-body floating system are predicted. A comparison of the theoretical method-based Solutions with experimental results has shown good agreement.展开更多
Modal analysis is a fundamental and important task for modeling and control of the flexible manipulator. However, almost all of the traditional modal analysis methods view the flexible manipulator as a pure mechanical...Modal analysis is a fundamental and important task for modeling and control of the flexible manipulator. However, almost all of the traditional modal analysis methods view the flexible manipulator as a pure mechanical structure and neglect feedback action of joint controller. In order to study the effects of joint controller on the modal analysis of rotational flexible manipulator, a closed-loop analytical modal analysis method is proposed. Firstly, two exact boundary constraints, namely servo feedback constraint and bending moment constraint, are derived to solve the vibration partial differential equation. It is found that the stiffness and damping gains of joint controller are both included in the boundary conditions, which lead to an unconventional secular term. Secondly, analytical algorithm based on Ritz approach is developed by using Laplace transform and complex modal approach to obtain the natural frequencies and mode shapes. And then, the numerical simulations are performed and the computational results show that joint controller has pronounced influence on the modal parameters: joint controller stiffness reduces the natural frequency, while joint controller damping makes the shape phase non-zero. Furthermore, the validity of the presented conclusion is confirmed through experimental studies. These findings are expected to improve the performance of dynamics simulation systems and model-based controllers.展开更多
Flexible joints are usually used to transfer velocities in robot systems and may lead to delays in motion transformation due to joint flexibility. In this paper, a linkrotor structure connected by a flexible joint or ...Flexible joints are usually used to transfer velocities in robot systems and may lead to delays in motion transformation due to joint flexibility. In this paper, a linkrotor structure connected by a flexible joint or shaft is firstly modeled to be a slow-fast delayed system when moment of inertia of the lightweight link is far less than that of the heavy rotor. To analyze the stability and oscillations of the slowfast system, the geometric singular perturbation method is extended, with both slow and fast manifolds expressed analytically. The stability of the slow manifold is investigated and critical boundaries are obtained to divide the stable and the unstable regions. To study effects of the transformation delay on the stability and oscillations of the link, two quantitatively different driving forces derived from the negative feedback of the link are considered. The results show that one of these two typical driving forces may drive the link to exhibit a stable state and the other kind of driving force may induce a relaxation oscillation for a very small delay. However, the link loses stability and undergoes regular periodic and bursting oscillation when the transformation delay is large. Basically, a very small delay does not affect the stability of the slow manifold but a large delay affects substantially.展开更多
A new impedance controller based on the dynamic surface control-backstepping technique to actualize the anticipant dynamic relationship between the motion of end-effector and the external torques was presented. Compar...A new impedance controller based on the dynamic surface control-backstepping technique to actualize the anticipant dynamic relationship between the motion of end-effector and the external torques was presented. Comparing with the traditional backstepping method that has "explosion of terms" problem, the new proposed control system is a combination of the dynamic surface control technique and the backstepping. The dynamic surface control (DSC) technique can resolve the "explosion of terms" problem that is caused by differential coefficient calculation in the model, and the problem can bring a complexity that will cause the backstepping method hardly to be applied to the practical application, especially to the multi-joint robot. Finally, the validity of the method was proved in the laboratory environment that was set up on the 5-DOF (degree of freedom) flexible joint robot. Tracking errors of DSC-backstepping impedance control that were 2.0 and 1.5 mm are better than those of backstepping impedance control which were 3.5 and 2.5 mm in directions X, Y in free space, respectively. And the anticipant Cartesian impedance behavior and compliant behavior were nchieved successfully as depicted theoretically.展开更多
The paper investigated the equivalent continuum modeling of beam-like repetitive truss structures considering the flexibility of joints,which models the contact between the truss member and joint by spring-damper with...The paper investigated the equivalent continuum modeling of beam-like repetitive truss structures considering the flexibility of joints,which models the contact between the truss member and joint by spring-damper with six directional stiffnesses and dampings.Firstly,a two-node hybrid joint-beam element was derived for modeling the truss member with flexible end joints,and a condensed model for the repeating element with flexible joints was obtained.Then,the energy equivalence method was adopted to equivalently model the truss structure with flexible joints and material damping as a spatial viscoelastic anisotropic beam model.Afterwards,the equations of motion for the equivalent beam model were derived and solved analytically in the frequency domain.In the numerical studies,the correctness of the presented method was verified by comparisons of the natural frequencies and frequency responses evaluated by the equivalent beam model with the results of the finite element method model.展开更多
An adaptive control scheme is presented,which can simultaneously realize vibration suppression and compliance control for flexible joint robot(FJR).The proposed control scheme provides a unified formulation for both v...An adaptive control scheme is presented,which can simultaneously realize vibration suppression and compliance control for flexible joint robot(FJR).The proposed control scheme provides a unified formulation for both vibration suppression mode,where FJR tracks the desired position with little vibration,and compliance mode,in which FJR presents passive.Instead of designing multiple controllers and switching between them,both modes are integrated into a single controller,and the transition between two modes is smooth and stable.The stability of the closed-loop system is theoretically proven via the Lyapunov method,with the considering the dynamics uncertainties in both link side and motor side.Simulation results are presented to illustrate good performances of the proposed control scheme.展开更多
Several typical flexible pneumatic actuators (FPA) and different mechanical models describing their behaviors have been proposed, however, it is difficult to balance compliance and load capacity in conventional desi...Several typical flexible pneumatic actuators (FPA) and different mechanical models describing their behaviors have been proposed, however, it is difficult to balance compliance and load capacity in conventional designs, and these models still have limitations in predicting behavior of FPAs. A new flexible pneumatic bending joint (FPBJ) with special anisotropic rigidity structure is proposed. The FPBJ is developed as an improvement with regard to existing types of FPA, and its principal characteristic is derived from the special anisotropic rigidity structure. With this structure, the load capacity in the direction perpendicular to bending plane is strengthened. The structure of the new FPBJ is explained and a mathematical model is derived based on Euler-Bernoulli beam model and Hook’s law. To obtain optimum design and usage, some key structure parameters and input-output characteristics are simulated. The simulation results reveal that the relationship between the structure parameters and FPBJ’s bending angle is nonlinear. At last, according to the simulation results, the FPBJ is manufactured with optional parameters and tested. The experimental results show that the joint’s statics characteristics are reflected by the mathematical model accurately when the FPBJ is deflated. The maximum relative error between simulation and experimental results is less than 6%. However, the model still has limitations. When the joint is inflated, the maximum relative error reaches 20%. This paper proposes a new flexible pneumatic bending joint which has sufficient load capacity and compliance, and the mathematical model provides theoretical guidance for the FPBJ’s structure design.展开更多
In this investigation, a modeling procedure of a telescopic boom of cranes is developed using the absolute nodal coordinate formulation together with the sliding joint constraints. Since telescopic booms are extracted...In this investigation, a modeling procedure of a telescopic boom of cranes is developed using the absolute nodal coordinate formulation together with the sliding joint constraints. Since telescopic booms are extracted and retracted under various operating conditions, the overall length of the boom changes dynamically, leading to the time-variant vibration characteristics. For modeling the telescopic structure of booms, a special care needs to be exercised since the location of the sliding contact point moves Mong the deformable axis of the flexible boom and the solution to a moving boundary problem is required. This issue indeed makes the modeling of the telescopic boom difficult, despite the significant needs for the analysis. It is, therefore, the objective of this investigation to develop a modeling procedure for the flexible telescopic boom by considering the sliding contact condition with the dynamic frictional effect. To this end, the sliding joint constraint developed for the absolute nodal coordinate formulation is employed for describing relative sliding motion between flexible booms, while flexible booms are modeled using the beam element of the absolute nodal coordinate formulation, which allows for modeling the large rotation and deformation of the structure.展开更多
This paper is dealing with the problem of tracking control for uncertain flexible joint manipulator robots driven by brushless direct current motor(BDCM). Flexibility of joint in the manipulator constitutes one of the...This paper is dealing with the problem of tracking control for uncertain flexible joint manipulator robots driven by brushless direct current motor(BDCM). Flexibility of joint in the manipulator constitutes one of the most important sources of uncertainties. In order to achieve high performance, all parts of the manipulator including actuator have been modeled. To cancel the tracking error, a hysteresis current controller and speed controllers have been developed. To evaluate the effectiveness of speed controllers, a comparative study between proportional integral(PI) and sliding mode controllers has been performed. Finally, simulation results carried out in the Matlab simulink environment demonstrate the high precision of sliding mode controller compared with PI controller in the presence of uncertainties of joint flexibility.展开更多
A robust controller method for flexible joint robot considering the effect caused by nonlinear friction was presented.The nonlinear friction was denoted as inverse additive output uncertainty relative to the nominal m...A robust controller method for flexible joint robot considering the effect caused by nonlinear friction was presented.The nonlinear friction was denoted as inverse additive output uncertainty relative to the nominal model in our work,based on which the describing function was analyzed in frequency domain,and the weighting function of nonlinear friction was further calculated as well. By combining the friction uncertainty,the mixed sensitivity H∞optimization was proposed as the benchmark for controller design, which also leaded to good performance of robustness. Furthermore,unstructured perturbation to the system was analyzed so that the stability was guaranteed. Simulation results show that the proposed controller can provide excellent tracking and regulation performance.展开更多
A linear flexible joint system using fractional order linear active disturbance rejection control is studied in this paper.With this control scheme,the performance against disturbances,uncertainties,and attenuation is...A linear flexible joint system using fractional order linear active disturbance rejection control is studied in this paper.With this control scheme,the performance against disturbances,uncertainties,and attenuation is enhanced.Linear active disturbance rejection control(LADRC)is mainly based on an extended state observer(ESO)technology.A fractional integral(FOI)action is combined with the LADRC technique which proposes a hybrid control scheme like FO-LADRC.Incorporating this FOI action improves the robustness of the standard LADRC.The set-point tracking of the proposed FO-LADRC scheme is designed by Bode’s ideal transfer function(BITF)based robust closed-loop concept,an appropriate pole placement method.The effectiveness of the proposed FO-LADRC scheme is illustrated through experimental results on the linear flexible joint system(LFJS).The results show the enhancement of the robustness with disturbance rejection.Furthermore,a comparative analysis is presented with the results obtained using the integer-order LADRC and FO-LADRC scheme.展开更多
ype-1 fuzzy sets cannot fully handle the uncertainties. To overcome the problem, type2 fuzzy sets have been proposed. The novelty of this paper is using interval type-2 fuzzy logic controller (IT2FLC) to control a f...ype-1 fuzzy sets cannot fully handle the uncertainties. To overcome the problem, type2 fuzzy sets have been proposed. The novelty of this paper is using interval type-2 fuzzy logic controller (IT2FLC) to control a flexible-joint robot with voltage control strategy. In order to take into account the whole robotic system including the dynamics of actuators and the robot manipulator, the voltages of motors are used as inputs of the system. To highlight the capabilities of the control system, a flexible joint robot which is highly nonlinear, heavily coupled and uncertain is used. In addition, to improve the control performance, the parameters of the primary membership functions of IT2FLC are optimized using particle swarm optimization (PSO). A comparative study between the proposed IT2FLC and type-1 fuzzy logic controller (T1FLC) is presented to better assess their respective performance in presence of external disturbance and unmodelled dynamics. Stability analysis is presented and the effectiveness of the proposed control approach is demonstrated by simulations using a two-link flexible-joint robot driven by permanent magnet direct current motors. Simulation results show the superiority of the IT2FLC over the T1FLC in terms of accuracy, robustness and interpretability.展开更多
The adaptive tracking problem for uncertain flexible joint robot system is studied in this paper. By utilizing the adaptive backstepping method, an adaptive controller is constructed at the beginning. By utilizing the...The adaptive tracking problem for uncertain flexible joint robot system is studied in this paper. By utilizing the adaptive backstepping method, an adaptive controller is constructed at the beginning. By utilizing the modified adaptive dynamic surface control technique, a new adaptive controller is presented afterwards to avoid the overparametrization problem and the explosion of complexity problem existing in the adaptive backstepping method. All the signals of the closed-loop system are rendered globally/semi-globally uniformly ultimately bounded, and the tracking error can be made arbitrarily small by tuning the designed parameters. A simulation example is given to show the validity of the control algorithm.展开更多
Focusing on the ball double-screw hydraulic knee joint as the research object,this paper analyzes the load driving performance of the hydraulic knee joint.Taking the posture data of the human body such as walking,squa...Focusing on the ball double-screw hydraulic knee joint as the research object,this paper analyzes the load driving performance of the hydraulic knee joint.Taking the posture data of the human body such as walking,squatting and landing buffer as initial learning objects,motion features are extracted.By simplifying the trajectories of different motion actions into key feature control points and flexible trajectory fitting,the trajectory of joint actions is optimized.This method can realize the adaptability of the hydraulic robot knee joint in different movements,and take the flexible action as the optimization goal under the condition of ensuring the movement performance,so as to reduce the damage to the knee joint caused by the foot impact in motion.The simulation model was built by Adams and Matlab to complete the performance analysis and motion optimization experiment of the knee joint.The simulation results show that the foot impact force of the experimental model decreases gradually through optimization.Finally,the method is applied to the hydraulic joint experimental prototype to prove its load capacity and flexible motion control performance.展开更多
In this paper,a new identification and control scheme for the flexible joint robotic manipulator is proposed.Firstly,by defining some new state variables,the commonly used dynamic equations of the flexible joint robot...In this paper,a new identification and control scheme for the flexible joint robotic manipulator is proposed.Firstly,by defining some new state variables,the commonly used dynamic equations of the flexible joint robotic manipulators are transformed into the standard form of a singularly perturbed model.Subsequently,an optimal bounded ellipsoid algorithm based identification scheme using multi-time-scale neural network is proposed to identify the unknown system dynamic equations.Lastly,by using the singular perturbation theory,an indirect adaptive controller based on the identified model is proposed to control the system such that the joint angles can track the given reference signals.The closed-loop stability of the whole system is proved,and the effectiveness of the proposed schemes is verified by simulations.展开更多
The tracking control problem for Flexible Joint Manipulator Control System(FJMCS)with unmeasurable states is addressed in this paper.Firstly,a High-Gain Observer(HGO)is constructed to estimate the unmeasurable states ...The tracking control problem for Flexible Joint Manipulator Control System(FJMCS)with unmeasurable states is addressed in this paper.Firstly,a High-Gain Observer(HGO)is constructed to estimate the unmeasurable states and the uncertainties.Then,a Dynamic Surface Control(DSC)scheme is developed by using the estimation of HGO.The newly proposed controller has two advantages over the existing methods:(A)a novel Spike Suppression Function(SSF)is developed to avoid the estimation spike problem in the existing HGO-based controllers.(B)Unlike the existing observer-based partial feedback control scheme that can only estimate the unmeasurable states,the proposed HGO can estimate both the unmeasurable states and uncertainties.The closed-loop system stability is proved by the Lyapunov theory.Simulation results demonstrate the effectiveness of the proposed controller.展开更多
Analytical models used to describe behaviour of steel frame loadbearing structures in fully developed fire usually do not allow for reduced joint stiffness due to increased member temperature. Joints previously design...Analytical models used to describe behaviour of steel frame loadbearing structures in fully developed fire usually do not allow for reduced joint stiffness due to increased member temperature. Joints previously designed as nominally rigid tend to become flexible in fire situation, with degree of flexibility increasing during fire development. Reliable analysis of this phenomenon and its influence on the redistribution of internal forces result in the need for developing appropriate characteristics, describing relationship between bending moment applied to the joint and joint rotation. Characteristics of such type, specified for fire conditions, depend on steel temperature, in the current work, the authors propose a practical approach to develop such characteristics, based on the knowledge of analogous characteristic prepared for persistent design situation. The developed technique does not require to generalize the classical component method to the case of fire, which may be difficult in practical situations. The proposed computational algorithm has been tested on an example of a typical beam-to-column joint.展开更多
This paper develops a novel interval type-2 fuzzy Proportional-Derivative (PD) control scheme for electrically driven flexible-joint robots using the direct method of Lyapunov. The controller has a simple design in a ...This paper develops a novel interval type-2 fuzzy Proportional-Derivative (PD) control scheme for electrically driven flexible-joint robots using the direct method of Lyapunov. The controller has a simple design in a decentralized structure. Compared to the previous controllers reported for the flexible-joint robots which use two control loops, it has a simpler structure using only one control loop. It guarantees stability and provides a good tracking performance. The controller considers the whole robotic system including the manipulator and motors by applying the voltage control strategy. Stability analysis is presented and the effectiveness of the proposed control approach is demonstrated by simulations using a three link flexible-joint robot driven by permanent magnet DC motors. Simulation results show that the interval type-2 fuzzy PD controller can handle external disturbance better than the type-1 fuzzy PD controller. In addition, it spends less control effort than the type-1 in order to deal with disturbance.展开更多
The dynamic model of two-flexible-arm mechanism with elastic joints is studied.The transmission problem of the joint which connects two flexible links is successfully solved. The mechanical model is proposed for the j...The dynamic model of two-flexible-arm mechanism with elastic joints is studied.The transmission problem of the joint which connects two flexible links is successfully solved. The mechanical model is proposed for the joint, and a practical vibration analysis method of lumped parameter transfer matrix modal analysis is developed for two flexible arms with an elastic joint.展开更多
A new kind of flexible pneumatic wall-climbing robot,named WALKMAN-I,was proposed. WALKMAN-I is basically composed of a flexible pneumatic actuator (FPA),a flexible pneumatic spherical joint and six suction cups. It h...A new kind of flexible pneumatic wall-climbing robot,named WALKMAN-I,was proposed. WALKMAN-I is basically composed of a flexible pneumatic actuator (FPA),a flexible pneumatic spherical joint and six suction cups. It has many characteristics of low-cost,lightweight,simple structure and good flexibility. Its operating principle was introduced. Then three basic locomotion modes,which are linear motion,curvilinear motion and crossing the orthogonal planes,were presented. The safety conditions of WALKMAN-I were discussed and built. Finally,the control system was designed and experiments were carried out. Experimental results show that WALKMAN-I is able to climb on the vertical wall surface along a straight line or a curved path,and has the ability of crossing orthogonal planes and obstacles. The maximum rotation angle reaches 90°,the maximum velocity reaches 5 mm/s,and the rotation angle and the moving velocity of WALKMAN-I can be easily controlled.展开更多
基金This project was supported by the National Natural Science Foundation of China (Grant No. 50039010)
文摘A new hybrid method of frequency domain and time domain is developed in this paper to predict the motion responses of a flexibly joint multi-body floating system to irregular waves. The main idea of the method is that the three-dimensional frequency method is used to obtain the hydrodynamic coefficients and the response equations are solved in time domain step by step. All the forces can be obtained at the same time. The motions and nonlinear mooring forces of a box type six-body floating system are predicted. A comparison of the theoretical method-based Solutions with experimental results has shown good agreement.
基金Supported by National Natural Science Foundation of China(Grant No.51305039)Specialized Research Fund for the Doctoral Program of Higher Education,China(Grant No.20110005120004)+1 种基金Fundamental Research Funds for the Central Universities,China(Grant No.2014PTB-00-01)National Basic Research Program of China(973 Program,Grant No.2013CB733000)
文摘Modal analysis is a fundamental and important task for modeling and control of the flexible manipulator. However, almost all of the traditional modal analysis methods view the flexible manipulator as a pure mechanical structure and neglect feedback action of joint controller. In order to study the effects of joint controller on the modal analysis of rotational flexible manipulator, a closed-loop analytical modal analysis method is proposed. Firstly, two exact boundary constraints, namely servo feedback constraint and bending moment constraint, are derived to solve the vibration partial differential equation. It is found that the stiffness and damping gains of joint controller are both included in the boundary conditions, which lead to an unconventional secular term. Secondly, analytical algorithm based on Ritz approach is developed by using Laplace transform and complex modal approach to obtain the natural frequencies and mode shapes. And then, the numerical simulations are performed and the computational results show that joint controller has pronounced influence on the modal parameters: joint controller stiffness reduces the natural frequency, while joint controller damping makes the shape phase non-zero. Furthermore, the validity of the presented conclusion is confirmed through experimental studies. These findings are expected to improve the performance of dynamics simulation systems and model-based controllers.
基金supported by the National Natural Science Foundation of China(11032009 and 11272236)
文摘Flexible joints are usually used to transfer velocities in robot systems and may lead to delays in motion transformation due to joint flexibility. In this paper, a linkrotor structure connected by a flexible joint or shaft is firstly modeled to be a slow-fast delayed system when moment of inertia of the lightweight link is far less than that of the heavy rotor. To analyze the stability and oscillations of the slowfast system, the geometric singular perturbation method is extended, with both slow and fast manifolds expressed analytically. The stability of the slow manifold is investigated and critical boundaries are obtained to divide the stable and the unstable regions. To study effects of the transformation delay on the stability and oscillations of the link, two quantitatively different driving forces derived from the negative feedback of the link are considered. The results show that one of these two typical driving forces may drive the link to exhibit a stable state and the other kind of driving force may induce a relaxation oscillation for a very small delay. However, the link loses stability and undergoes regular periodic and bursting oscillation when the transformation delay is large. Basically, a very small delay does not affect the stability of the slow manifold but a large delay affects substantially.
基金Project(2006AA04Z228) supported by the National High-Tech Research and Development Program of ChinaProject(PCSIRT) supported by Program for Changjiang Scholars and Innovative Research Team in University
文摘A new impedance controller based on the dynamic surface control-backstepping technique to actualize the anticipant dynamic relationship between the motion of end-effector and the external torques was presented. Comparing with the traditional backstepping method that has "explosion of terms" problem, the new proposed control system is a combination of the dynamic surface control technique and the backstepping. The dynamic surface control (DSC) technique can resolve the "explosion of terms" problem that is caused by differential coefficient calculation in the model, and the problem can bring a complexity that will cause the backstepping method hardly to be applied to the practical application, especially to the multi-joint robot. Finally, the validity of the method was proved in the laboratory environment that was set up on the 5-DOF (degree of freedom) flexible joint robot. Tracking errors of DSC-backstepping impedance control that were 2.0 and 1.5 mm are better than those of backstepping impedance control which were 3.5 and 2.5 mm in directions X, Y in free space, respectively. And the anticipant Cartesian impedance behavior and compliant behavior were nchieved successfully as depicted theoretically.
基金This work was supported by the National Natural Science Foundation of China(Grants 11702146,11732006 and 11827801)the Equipment Pre-research Foundation(Grant 6140210010202).
文摘The paper investigated the equivalent continuum modeling of beam-like repetitive truss structures considering the flexibility of joints,which models the contact between the truss member and joint by spring-damper with six directional stiffnesses and dampings.Firstly,a two-node hybrid joint-beam element was derived for modeling the truss member with flexible end joints,and a condensed model for the repeating element with flexible joints was obtained.Then,the energy equivalence method was adopted to equivalently model the truss structure with flexible joints and material damping as a spatial viscoelastic anisotropic beam model.Afterwards,the equations of motion for the equivalent beam model were derived and solved analytically in the frequency domain.In the numerical studies,the correctness of the presented method was verified by comparisons of the natural frequencies and frequency responses evaluated by the equivalent beam model with the results of the finite element method model.
基金supported by the National Key R&D Program of China(No.2017YFB1300400)the National Natural Science Foundation of China(No. 51805107)
文摘An adaptive control scheme is presented,which can simultaneously realize vibration suppression and compliance control for flexible joint robot(FJR).The proposed control scheme provides a unified formulation for both vibration suppression mode,where FJR tracks the desired position with little vibration,and compliance mode,in which FJR presents passive.Instead of designing multiple controllers and switching between them,both modes are integrated into a single controller,and the transition between two modes is smooth and stable.The stability of the closed-loop system is theoretically proven via the Lyapunov method,with the considering the dynamics uncertainties in both link side and motor side.Simulation results are presented to illustrate good performances of the proposed control scheme.
基金Supported by National Natural Science Foundation of China (Grant No.51075363)Zhejiang Provincial Natural Science Outstanding Youth Team Foundation of China (Grant No.R1090674)+1 种基金Zhejiang Provincial Natural Science Foundation of China (Grant No.LY12E05022)Open Fund of Key Laboratory of E&M (Zhejiang University of Technology),Ministry of Education & Zhejiang Province of China (Grant No.2009EP026)
文摘Several typical flexible pneumatic actuators (FPA) and different mechanical models describing their behaviors have been proposed, however, it is difficult to balance compliance and load capacity in conventional designs, and these models still have limitations in predicting behavior of FPAs. A new flexible pneumatic bending joint (FPBJ) with special anisotropic rigidity structure is proposed. The FPBJ is developed as an improvement with regard to existing types of FPA, and its principal characteristic is derived from the special anisotropic rigidity structure. With this structure, the load capacity in the direction perpendicular to bending plane is strengthened. The structure of the new FPBJ is explained and a mathematical model is derived based on Euler-Bernoulli beam model and Hook’s law. To obtain optimum design and usage, some key structure parameters and input-output characteristics are simulated. The simulation results reveal that the relationship between the structure parameters and FPBJ’s bending angle is nonlinear. At last, according to the simulation results, the FPBJ is manufactured with optional parameters and tested. The experimental results show that the joint’s statics characteristics are reflected by the mathematical model accurately when the FPBJ is deflated. The maximum relative error between simulation and experimental results is less than 6%. However, the model still has limitations. When the joint is inflated, the maximum relative error reaches 20%. This paper proposes a new flexible pneumatic bending joint which has sufficient load capacity and compliance, and the mathematical model provides theoretical guidance for the FPBJ’s structure design.
基金supported by Kato Construction Machine Research & Development Promotion Fund
文摘In this investigation, a modeling procedure of a telescopic boom of cranes is developed using the absolute nodal coordinate formulation together with the sliding joint constraints. Since telescopic booms are extracted and retracted under various operating conditions, the overall length of the boom changes dynamically, leading to the time-variant vibration characteristics. For modeling the telescopic structure of booms, a special care needs to be exercised since the location of the sliding contact point moves Mong the deformable axis of the flexible boom and the solution to a moving boundary problem is required. This issue indeed makes the modeling of the telescopic boom difficult, despite the significant needs for the analysis. It is, therefore, the objective of this investigation to develop a modeling procedure for the flexible telescopic boom by considering the sliding contact condition with the dynamic frictional effect. To this end, the sliding joint constraint developed for the absolute nodal coordinate formulation is employed for describing relative sliding motion between flexible booms, while flexible booms are modeled using the beam element of the absolute nodal coordinate formulation, which allows for modeling the large rotation and deformation of the structure.
文摘This paper is dealing with the problem of tracking control for uncertain flexible joint manipulator robots driven by brushless direct current motor(BDCM). Flexibility of joint in the manipulator constitutes one of the most important sources of uncertainties. In order to achieve high performance, all parts of the manipulator including actuator have been modeled. To cancel the tracking error, a hysteresis current controller and speed controllers have been developed. To evaluate the effectiveness of speed controllers, a comparative study between proportional integral(PI) and sliding mode controllers has been performed. Finally, simulation results carried out in the Matlab simulink environment demonstrate the high precision of sliding mode controller compared with PI controller in the presence of uncertainties of joint flexibility.
基金National Natural Science Foundation of China(No.61273339)
文摘A robust controller method for flexible joint robot considering the effect caused by nonlinear friction was presented.The nonlinear friction was denoted as inverse additive output uncertainty relative to the nominal model in our work,based on which the describing function was analyzed in frequency domain,and the weighting function of nonlinear friction was further calculated as well. By combining the friction uncertainty,the mixed sensitivity H∞optimization was proposed as the benchmark for controller design, which also leaded to good performance of robustness. Furthermore,unstructured perturbation to the system was analyzed so that the stability was guaranteed. Simulation results show that the proposed controller can provide excellent tracking and regulation performance.
基金This research work was funded by Institutional Fund Projects under Grant No.(IFPRC-027-135-2020).
文摘A linear flexible joint system using fractional order linear active disturbance rejection control is studied in this paper.With this control scheme,the performance against disturbances,uncertainties,and attenuation is enhanced.Linear active disturbance rejection control(LADRC)is mainly based on an extended state observer(ESO)technology.A fractional integral(FOI)action is combined with the LADRC technique which proposes a hybrid control scheme like FO-LADRC.Incorporating this FOI action improves the robustness of the standard LADRC.The set-point tracking of the proposed FO-LADRC scheme is designed by Bode’s ideal transfer function(BITF)based robust closed-loop concept,an appropriate pole placement method.The effectiveness of the proposed FO-LADRC scheme is illustrated through experimental results on the linear flexible joint system(LFJS).The results show the enhancement of the robustness with disturbance rejection.Furthermore,a comparative analysis is presented with the results obtained using the integer-order LADRC and FO-LADRC scheme.
文摘ype-1 fuzzy sets cannot fully handle the uncertainties. To overcome the problem, type2 fuzzy sets have been proposed. The novelty of this paper is using interval type-2 fuzzy logic controller (IT2FLC) to control a flexible-joint robot with voltage control strategy. In order to take into account the whole robotic system including the dynamics of actuators and the robot manipulator, the voltages of motors are used as inputs of the system. To highlight the capabilities of the control system, a flexible joint robot which is highly nonlinear, heavily coupled and uncertain is used. In addition, to improve the control performance, the parameters of the primary membership functions of IT2FLC are optimized using particle swarm optimization (PSO). A comparative study between the proposed IT2FLC and type-1 fuzzy logic controller (T1FLC) is presented to better assess their respective performance in presence of external disturbance and unmodelled dynamics. Stability analysis is presented and the effectiveness of the proposed control approach is demonstrated by simulations using a two-link flexible-joint robot driven by permanent magnet direct current motors. Simulation results show the superiority of the IT2FLC over the T1FLC in terms of accuracy, robustness and interpretability.
基金supported by National Natural Science Foundation of China(No.61273091)the Project of Taishan Scholar of Shandong Provincethe Ph.D.Programs Foundation of Ministry of Education of China
文摘The adaptive tracking problem for uncertain flexible joint robot system is studied in this paper. By utilizing the adaptive backstepping method, an adaptive controller is constructed at the beginning. By utilizing the modified adaptive dynamic surface control technique, a new adaptive controller is presented afterwards to avoid the overparametrization problem and the explosion of complexity problem existing in the adaptive backstepping method. All the signals of the closed-loop system are rendered globally/semi-globally uniformly ultimately bounded, and the tracking error can be made arbitrarily small by tuning the designed parameters. A simulation example is given to show the validity of the control algorithm.
基金supported by the Top Discipline Plan of Shanghai Universities-Class I,the National Natural Science Foundation of China(52205279)the China National Postdoctoral Program for Innovative Talents(BX20190242)+1 种基金the Open Foundation of the State Key Laboratory of Fluid Power and Mechatronic Systems(GZKF-202017)the Open Foundation of the National Engineering Technology Research Center for Prefabrication Construction in Civil Engineering(2021CPCCE-K02).
文摘Focusing on the ball double-screw hydraulic knee joint as the research object,this paper analyzes the load driving performance of the hydraulic knee joint.Taking the posture data of the human body such as walking,squatting and landing buffer as initial learning objects,motion features are extracted.By simplifying the trajectories of different motion actions into key feature control points and flexible trajectory fitting,the trajectory of joint actions is optimized.This method can realize the adaptability of the hydraulic robot knee joint in different movements,and take the flexible action as the optimization goal under the condition of ensuring the movement performance,so as to reduce the damage to the knee joint caused by the foot impact in motion.The simulation model was built by Adams and Matlab to complete the performance analysis and motion optimization experiment of the knee joint.The simulation results show that the foot impact force of the experimental model decreases gradually through optimization.Finally,the method is applied to the hydraulic joint experimental prototype to prove its load capacity and flexible motion control performance.
基金the Natural Sciences and Engineering Research Council of Canada(No.N00892)。
文摘In this paper,a new identification and control scheme for the flexible joint robotic manipulator is proposed.Firstly,by defining some new state variables,the commonly used dynamic equations of the flexible joint robotic manipulators are transformed into the standard form of a singularly perturbed model.Subsequently,an optimal bounded ellipsoid algorithm based identification scheme using multi-time-scale neural network is proposed to identify the unknown system dynamic equations.Lastly,by using the singular perturbation theory,an indirect adaptive controller based on the identified model is proposed to control the system such that the joint angles can track the given reference signals.The closed-loop stability of the whole system is proved,and the effectiveness of the proposed schemes is verified by simulations.
基金co-supported by Natural Science Foundation of Shaanxi Province(Nos.2020JM-131,2020KW-058)the Key Research and Development Program of Shaanxi,China(Nos.2019GY-025,2018GY-091)+1 种基金Xi’an Science and Technology Plan Project,China(No.2020KJRC0134)Special Fund for High Level Talents of Xijing University,China(No.XJ20B07)。
文摘The tracking control problem for Flexible Joint Manipulator Control System(FJMCS)with unmeasurable states is addressed in this paper.Firstly,a High-Gain Observer(HGO)is constructed to estimate the unmeasurable states and the uncertainties.Then,a Dynamic Surface Control(DSC)scheme is developed by using the estimation of HGO.The newly proposed controller has two advantages over the existing methods:(A)a novel Spike Suppression Function(SSF)is developed to avoid the estimation spike problem in the existing HGO-based controllers.(B)Unlike the existing observer-based partial feedback control scheme that can only estimate the unmeasurable states,the proposed HGO can estimate both the unmeasurable states and uncertainties.The closed-loop system stability is proved by the Lyapunov theory.Simulation results demonstrate the effectiveness of the proposed controller.
文摘Analytical models used to describe behaviour of steel frame loadbearing structures in fully developed fire usually do not allow for reduced joint stiffness due to increased member temperature. Joints previously designed as nominally rigid tend to become flexible in fire situation, with degree of flexibility increasing during fire development. Reliable analysis of this phenomenon and its influence on the redistribution of internal forces result in the need for developing appropriate characteristics, describing relationship between bending moment applied to the joint and joint rotation. Characteristics of such type, specified for fire conditions, depend on steel temperature, in the current work, the authors propose a practical approach to develop such characteristics, based on the knowledge of analogous characteristic prepared for persistent design situation. The developed technique does not require to generalize the classical component method to the case of fire, which may be difficult in practical situations. The proposed computational algorithm has been tested on an example of a typical beam-to-column joint.
文摘This paper develops a novel interval type-2 fuzzy Proportional-Derivative (PD) control scheme for electrically driven flexible-joint robots using the direct method of Lyapunov. The controller has a simple design in a decentralized structure. Compared to the previous controllers reported for the flexible-joint robots which use two control loops, it has a simpler structure using only one control loop. It guarantees stability and provides a good tracking performance. The controller considers the whole robotic system including the manipulator and motors by applying the voltage control strategy. Stability analysis is presented and the effectiveness of the proposed control approach is demonstrated by simulations using a three link flexible-joint robot driven by permanent magnet DC motors. Simulation results show that the interval type-2 fuzzy PD controller can handle external disturbance better than the type-1 fuzzy PD controller. In addition, it spends less control effort than the type-1 in order to deal with disturbance.
文摘The dynamic model of two-flexible-arm mechanism with elastic joints is studied.The transmission problem of the joint which connects two flexible links is successfully solved. The mechanical model is proposed for the joint, and a practical vibration analysis method of lumped parameter transfer matrix modal analysis is developed for two flexible arms with an elastic joint.
基金Project (50575206) supported by the National Natural Science Foundation of ChinaProject (BX102716) supported by Xinmiao Program of Zhejiang Province, China
文摘A new kind of flexible pneumatic wall-climbing robot,named WALKMAN-I,was proposed. WALKMAN-I is basically composed of a flexible pneumatic actuator (FPA),a flexible pneumatic spherical joint and six suction cups. It has many characteristics of low-cost,lightweight,simple structure and good flexibility. Its operating principle was introduced. Then three basic locomotion modes,which are linear motion,curvilinear motion and crossing the orthogonal planes,were presented. The safety conditions of WALKMAN-I were discussed and built. Finally,the control system was designed and experiments were carried out. Experimental results show that WALKMAN-I is able to climb on the vertical wall surface along a straight line or a curved path,and has the ability of crossing orthogonal planes and obstacles. The maximum rotation angle reaches 90°,the maximum velocity reaches 5 mm/s,and the rotation angle and the moving velocity of WALKMAN-I can be easily controlled.