期刊文献+
共找到1,690篇文章
< 1 2 85 >
每页显示 20 50 100
Optimization of Guide Vane Geometry in a Pump-as-Turbine through an Orthogonal Test Approach
1
作者 Fengxia Shi Pengcheng Wang +1 位作者 Haonan Zhan Xiangyun Shi 《Fluid Dynamics & Materials Processing》 2025年第5期1221-1238,共18页
To investigate the impact of guide vane geometry—specifically,outlet angle,blade count,and radial height—on the performance of a Pump as Turbine(PAT),radial guide vanes were introduced upstream of the impeller in an... To investigate the impact of guide vane geometry—specifically,outlet angle,blade count,and radial height—on the performance of a Pump as Turbine(PAT),radial guide vanes were introduced upstream of the impeller in an IS80-50-315 low-specific-speed centrifugal PAT.Using an orthogonal test design,numerical simulations were conducted on 16 different PAT configurations,and the influence of vane geometry on performance was analyzed through a range analysis to determine the optimal parameter combinations.The results indicate that the number of guide vane blades significantly affects both the hydraulic efficiency and water head of the PAT under optimal operating conditions.Notably,the hydraulic efficiency of Configuration No.1(featuring five guide vane blades,a 6°outlet angle,and a 46 mm radial height)is 4.31%higher than that of Configuration No.13(with the same blade count but a 9°outlet angle and a 52 mm radial height).Additionally,Configuration No.1 exhibits lower turbulence kinetic energy dissipation and reduced blade loading.Furthermore,the study reveals that a smaller guide vane outlet angle and reduced radial height contribute to improved operational stability. 展开更多
关键词 pump as turbine radial guide vanes orthogonal test transient analysis
在线阅读 下载PDF
A Low Common-Mode Voltage Virtual Space Vector Modulation of Three-Level Converters for Doubly-Fed Variable-Speed Pumped Storage Systems
2
作者 Ziqiang Man Lei Zhao +6 位作者 Zheng Tao Shiming Cheng Wei Yan Gaoyue Zhong Yu Lu Wenming Zhang Li Zhang 《Energy Engineering》 2025年第9期3555-3572,共18页
With the rapid integration of renewable energy sources,modern power systems are increasingly challenged by heightened volatility and uncertainty.Doubly-fed variable-speed pumped storage units(DFVS-PSUs)have emerged as... With the rapid integration of renewable energy sources,modern power systems are increasingly challenged by heightened volatility and uncertainty.Doubly-fed variable-speed pumped storage units(DFVS-PSUs)have emerged as promising technologies for mitigating grid oscillations and enhancing system flexibility.However,the excitation converters in DFVS-PSUs are prone to significant issues such as elevated common-mode voltage(CMV)and neutral-point voltage(NPV)fluctuations,which can lead to electromagnetic interference and degrade transient performance.To address these challenges,an optimized virtual space vector pulse width modulation(OVSVPWM)strategy is proposed,aiming to suppress CMV and NPV simultaneously through coordinated multi-objective control.Specifically,a dynamic feedback mechanism is introduced to adjust the balancing factor of basic vectors in the synthesized virtual small vector in real-time,achieving autonomous balancing of the NPV.To address the excessive switching actions introduced by the OVSVPWM strategy,a phase duty ratio-based sequence reconstruction method is adopted,which reduces the total number of switching actions to half of the original.A zero-level buffering scheme is employed to reconstruct the single-phase voltage-level output sequence,achieving peak CMV suppression down to udc/6.Simulation results demonstrate that the proposed strategy significantly improves electromagnetic compatibility and operational stability while maintaining high power quality. 展开更多
关键词 Doubly-fed variable-speed pumped storage units three-level excitation converter common-mode voltage neutral-point voltage virtual space voltage vector
在线阅读 下载PDF
A Review of Methods for“Pump as Turbine”(PAT)Performance Prediction and Optimal Design
3
作者 Xiao Sun Huifan Huang +3 位作者 Yanjuan Zhao Lianghuai Tong Haibin Lin Yuliang Zhang 《Fluid Dynamics & Materials Processing》 2025年第6期1261-1298,共38页
The reverse operation of existing centrifugal pumps,commonly referred to as“Pump as Turbine”(PAT),is a key approach for recovering liquid pressure energy.As a type of hydraulic machinery characterized by a simple st... The reverse operation of existing centrifugal pumps,commonly referred to as“Pump as Turbine”(PAT),is a key approach for recovering liquid pressure energy.As a type of hydraulic machinery characterized by a simple structure and user-friendly operation,PAT holds significant promise for application in industrial waste energy recovery systems.This paper reviews recent advancements in this field,with a focus on pump type selection,performance prediction,and optimization design.First,the advantages of various prototype pumps,including centrifugal,axial-flow,mixed-flow,screw,and plunger pumps,are examined in specific application scenarios while analyzing their suitability for turbine operation.Next,performance prediction techniques for PATs are discussed,encompassing theoretical calculations,numerical simulations,and experimental testing.Special emphasis is placed on the crucial role of Computational Fluid Dynamics(CFD)and internal flow field testing technologies in analyzing PAT internal flow characteristics.Additionally,the impact of multi-objective optimization methods and the application of advanced materials on PAT performance enhancement is addressed.Finally,based on current research findings and existing technical challenges,this review also indicates future development directions;in particular,four key breakthrough areas are identified:advanced materials,innovative design methodologies,internal flow diagnostics,and in-depth analysis of critical components. 展开更多
关键词 pump as turbine(PAT) type selection performance prediction internal and external characteristics optimal design
在线阅读 下载PDF
The Control System Simulation of Variable-Speed Constant-Frequency Wind Turbine
4
作者 窦金延 曹娜 《Journal of Measurement Science and Instrumentation》 CAS 2010年第S1期202-206,共5页
In general,Variable-Speed Constant Frequency (VSCF)Wind generation system is controlled by stator voltage orientation method which based on the mathematic model of VSCF Wind generation system and discussed the control... In general,Variable-Speed Constant Frequency (VSCF)Wind generation system is controlled by stator voltage orientation method which based on the mathematic model of VSCF Wind generation system and discussed the control strategy.Present the whole dynamic control model of variable-speed wind generator system in MATLAB/ Simulink,and the simulation results confirm the validity and effectiveness of the proposed control strategy. 展开更多
关键词 variable-speed constant-frequency MODEL wind turbines control system vector control
在线阅读 下载PDF
Experimental Study of the Pressure Fluctuations in a Pump Turbine at Large Partial Flow Conditions 被引量:37
5
作者 RAN Hongjuan LUO Xianwu +3 位作者 ZHU Lei ZHANG Yao WANG Xin XU Hongyuan 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2012年第6期1205-1209,共5页
Frequent shifts of output and operating mode require a pump turbine with excellent stability. Current researches show that large partial flow conditions in pump mode experience positive-slope phenomena with a large he... Frequent shifts of output and operating mode require a pump turbine with excellent stability. Current researches show that large partial flow conditions in pump mode experience positive-slope phenomena with a large head drop. The pressure fluctuation at the positive slope is crucial to the pump turbine unit safety. The operating instabilities at large partial flow conditions for a pump turbine are analyzed. The hydraulic performance of a model pump turbine is tested with the pressure fluctuations measured at unstable operating points near a positive slope in the performance curve. The hydraulic performance tests show that there are two separated positive-slope regions for the pump turbine, with the flow discharge for the first positive slope from 0.85 to 0.91 times that at the maximum efficiency point. The amplitudes of the pressure fluctuations at these unstable large partial flow conditions near the first positive slope are much larger than those at stable operating condtions. A dominant frequency is measured at 0.2 times the impeller rotational frequency in the flow passage near the impeller exit, which is believed to be induced by the rotating stall in the flow passage of the wicket gates. The test results also show hysteresis with pressure fluctuations when the pump turbine is operated near the first positive slope. The hysteresis creates different pressure fluctuations for those operation points even though their flow rates and heads are similar respectively. The pressure fluctuation characteristics at large partial flow conditions obtained by the present study will be helpful for the safe operation of pumped storage units. 展开更多
关键词 positive slope pressure fluctuation rotating stall pump turbine
在线阅读 下载PDF
Transient simulation of a pump-turbine with misaligned guide vanes during turbine model start-up 被引量:12
6
作者 Ye-Xiang Xiao Ruo-Fu Xiao 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2014年第5期646-655,共10页
Experimental studies of a model pump-turbine S-curve characteristics and its improvement by misaligned guide vanes (MGV) were extended to prototype pump turbine through 3-D transient flow simulations. The unsteady R... Experimental studies of a model pump-turbine S-curve characteristics and its improvement by misaligned guide vanes (MGV) were extended to prototype pump turbine through 3-D transient flow simulations. The unsteady Reynolds-averaged Navier-Stokes equations with the SST turbulence model were used to model the transient flow within the entire flow passage of a reversible pump-turbine with and without misaligned guide vanes during turbine model start-up. The unstable S-curve and its improvement by using misaligned guide vane were verified by model test and simulation. The transient flow calculations were used to clarify the variations of pressure pulse and internal flow behavior in the entire flow passage. The use of misaligned guide vanes can eliminate the S-curve characteristics of a pump-turbine, and can significantly increase the pressure pulse amplitude in the entire flow passage and the runner radial forces during start-up. The MGV only decreased the pulse amplitude on the guide vane suction side when the rotating speed was less than 50% rated speed. The hydraulic reason is that the MGV dramatically changed the flow patterns inside the entire flow passage, and destroyed the symmetry of the flow distribution inside the guide vane and runner. 展开更多
关键词 Transient flow. pump turbine. Misaligned guide vane Model test Pressure pulse
在线阅读 下载PDF
Optimization of a Centrifugal Pump Used as a Turbine Impeller By Means of an Orthogonal Test Approach 被引量:7
7
作者 Peng Tian Jun Huang +1 位作者 Weidong Shi Ling Zhou 《Fluid Dynamics & Materials Processing》 EI 2019年第2期139-151,共13页
A prototype centrifugal pump with a specific speed of 110 is used to investigate and optimize the performances of a turbine for power generation.Particular attention is given to the design of the internal impeller.The... A prototype centrifugal pump with a specific speed of 110 is used to investigate and optimize the performances of a turbine for power generation.Particular attention is given to the design of the internal impeller.The internal flow field is simulated in the framework of a commercial computational fluid dynamics software(ANSYS).Four geometrical parameters of the impeller are considered,i.e.,the inlet diameter,the inlet width,the blade number,and the blade angle.The optimization is carried out on the basis of a three-level approach relying on an orthogonal test method.The results of the numerical simulations show good agreement with the experimental tests under different flow conditions.In accordance with the L9(34)design table,the head and efficiency under the rated flow rate of the nine designed schemes are calculated and processed with the method of range analysis to obtain an optimized model. 展开更多
关键词 pump AS turbine numerical calculation ORTHOGONAL test OPTIMIZATION design
在线阅读 下载PDF
Study on Energy Conversion Characteristics in Volute of Pump as Turbine 被引量:8
8
作者 Senchun Miao Hongbiao Zhang +2 位作者 Fengxia Shi Xiaohui Wang Xijin Ma 《Fluid Dynamics & Materials Processing》 EI 2021年第1期201-214,共14页
A volute is a curved funnel with cross-sectional area increasing towards the discharge port.The volute of a centrifugal pump is the casing hosting the fluid being pumped by the impeller.In Pump-as-turbine devices(PAT)... A volute is a curved funnel with cross-sectional area increasing towards the discharge port.The volute of a centrifugal pump is the casing hosting the fluid being pumped by the impeller.In Pump-as-turbine devices(PAT),vice versa the volute plays the role of energy conversion element.In the present analysis,this process is analyzed using CFD.The results show that in the contraction section of volute the conversion between dynamic pressure energy and static pressure energy essentially depends on the reduction of flow area,while in the spiral section,frictional losses also play a significant role.From the throat to the end of the volute,the flow decreases in a wave-like manner. 展开更多
关键词 pump as turbine VOLUTE energy conversion static pressure power dynamic pressure power
在线阅读 下载PDF
A Study on the Unsteady Flow Characteristics and Energy Conversion in the Volute of a Pump-as-Turbine Device 被引量:5
9
作者 Senchun Miao Hongbiao Zhang +1 位作者 Wanglong Tian Yinqiang Li 《Fluid Dynamics & Materials Processing》 EI 2021年第6期1021-1036,共16页
To study the unsteady flow and related energy conversion process in the volute of a pump-as-turbine(PAT)device,six different working conditions have been considered.Through numerical calculation,the spatio-temporal va... To study the unsteady flow and related energy conversion process in the volute of a pump-as-turbine(PAT)device,six different working conditions have been considered.Through numerical calculation,the spatio-temporal variation of static pressure,dynamic pressure,total pressure and turbulent energy dissipation have been determined in each section of the volute.It is concluded that the reduction of the total power of two adjacent sections of the PAT volute is equal to the sum of the power lost by the fluid while moving from one section to the other and the power output from the two adjacent sections.For a fixed flow rate,the percentage of static pressure energy at the outlet of the PAT is roughly similar to that of the corresponding volute section,and both show a gradually increasing trend.The turbulent dissipation rate on each section of the PAT volute displays a similar a spatio-temporal behavior for different flow rates. 展开更多
关键词 pump as turbine VOLUTE energy conversion UNSTEADY numerical simulation
在线阅读 下载PDF
Entropy Production Analysis for Hump Characteristics of a Pump Turbine Model 被引量:9
10
作者 LI Deyou GONG Ruzhi +3 位作者 WANG Hongjie XIANG Gaoming WEI Xianzhu QIN Daqing 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2016年第4期803-812,共10页
The hump characteristic is one of the main problems for the stable operation of pump turbines in pump mode.However,traditional methods cannot reflect directly the energy dissipation in the hump region.In this paper,3D... The hump characteristic is one of the main problems for the stable operation of pump turbines in pump mode.However,traditional methods cannot reflect directly the energy dissipation in the hump region.In this paper,3D simulations are carried out using the SST k-ω turbulence model in pump mode under different guide vane openings.The numerical results agree with the experimental data.The entropy production theory is introduced to determine the flow losses in the whole passage,based on the numerical simulation.The variation of entropy production under different guide vane openings is presented.The results show that entropy production appears to be a wave,with peaks under different guide vane openings,which correspond to wave troughs in the external characteristic curves.Entropy production mainly happens in the runner,guide vanes and stay vanes for a pump turbine in pump mode.Finally,entropy production rate distribution in the runner,guide vanes and stay vanes is analyzed for four points under the 18 mm guide vane opening in the hump region.The analysis indicates that the losses of the runner and guide vanes lead to hump characteristics.In addition,the losses mainly occur in the runner inlet near the band and on the suction surface of the blades.In the guide vanes and stay vanes,the losses come from pressure surface of the guide vanes and the wake effects of the vanes.A new insight-entropy production analysis is carried out in this paper in order to find the causes of hump characteristics in a pump turbine,and it could provide some basic theoretical guidance for the loss analysis of hydraulic machinery. 展开更多
关键词 fluid machinery pump turbine entropy production hump characteristics loss
在线阅读 下载PDF
Noise comparison of centrifugal pump operating in pump and turbine mode 被引量:7
11
作者 DONG Liang DAI Cui +1 位作者 LIN Hai-bo CHEN Yi-ping 《Journal of Central South University》 SCIE EI CAS CSCD 2018年第11期2733-2753,共21页
Investigations regarding the relation of noise performance for centrifugal pump operating in pump and turbine modes continue to be inadequate.This paper presents a series of comparisons of flow-induced noise for both ... Investigations regarding the relation of noise performance for centrifugal pump operating in pump and turbine modes continue to be inadequate.This paper presents a series of comparisons of flow-induced noise for both operation modes.The interior flow-borne noise and structure modal were verified through experiments.The flow-borne noise was calculated by the acoustic boundary element method(ABEM),and the flow-induced structure noise was obtained by the coupled acoustic boundary element method(ABEM)/structure finite element method(SFEM).The results show that in pump mode,the pressure fluctuation in the volute is comparable to that in the outlet pipe,but in turbine mode,the pressure fluctuation in the impeller is comparable to that in the draft tube.The main frequency of interior flow-borne noise lies at blade passing frequency(BPF)and it shifts to the 9th BPF for interior flow-induced structure noise.The peak values at horizontal plane appear at the 5th BPF,and at axial plane,they get the highest sound pressure level(SPL)at the 8th BPF.Comparing with interior noise,the SPL of exterior flow-induced structure noise is incredibly small.At the 5th BPF,the pump body,cover and suspension show higher SPL in both modes.The outer walls of turbine generate relatively larger SPL than those of the pump. 展开更多
关键词 centrifugal pump as turbine noise performance acoustic boundary element method acoustic finite element method
在线阅读 下载PDF
Analysis of the Pump-turbine S Characteristics Using the Detached Eddy Simulation Method 被引量:11
12
作者 SUN Hui XIAO Ruofu +2 位作者 WANG Fujun XIAO Yexiang LIU Weichao 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2015年第1期115-122,共8页
Current research on pump-turbine units is focused on the unstable operation at off-design conditions, with the characteristic curves in generating mode being S-shaped. Unlike in the traditional water turbines, pump-tu... Current research on pump-turbine units is focused on the unstable operation at off-design conditions, with the characteristic curves in generating mode being S-shaped. Unlike in the traditional water turbines, pump-turbine operation along the S-shaped curve can lead to difficulties during load rejection with unusual increases in the water pressure, which leads to machine vibrations. This paper describes both model tests and numerical simulations. A reduced scale model of a low specific speed pump-turbine was used for the performance tests, with comparisons to computational fluid dynamics(CFD) results. Predictions using the detached eddy simulation(DES) turbulence model, which is a combined Reynolds averaged Naviers-Stokes(RANS) and large eddy simulation(LES) model, are compared with the two-equation turbulence mode results. The external characteristics as well as the internal flow are for various guide vane openings to understand the unsteady flow along the so called S characteristics of a pump-turbine. Comparison of the experimental data with the CFD results for various conditions and times shows that DES model gives better agreement with experimental data than the two-equation turbulence model. For low flow conditions, the centrifugal forces and the large incident angle create large vortices between the guide vanes and the runner inlet in the runner passage, which is the main factor leading to the S-shaped characteristics. The turbulence model used here gives more accurate simulations of the internal flow characteristics of the pump-turbine and a more detailed force analysis which shows the mechanisms controlling of the S characteristics. 展开更多
关键词 pump-turbine S-shaped characteristics detached eddy simulation(DES) numerical analysis
在线阅读 下载PDF
3D Two-way Coupled TEHD Analysis on the Lubricating Characteristics of Thrust Bearings in Pump-turbine Units by Combining CFD and FEA 被引量:4
13
作者 ZHAI Liming LUO Yongyao +1 位作者 WANG Zhengwei LIU Xin 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2016年第1期112-123,共12页
The thermal elastic hydro dynamic (TEHD) lubrication analysis for the thrust bearing is usually conducted by combining Reynolds equation with finite element analysis (FEA). But it is still a problem to conduct the... The thermal elastic hydro dynamic (TEHD) lubrication analysis for the thrust bearing is usually conducted by combining Reynolds equation with finite element analysis (FEA). But it is still a problem to conduct the computation by combining computational fluid dynamics (CFD) and FEA which can simulate the TEHD more accurately. In this paper, by using both direct and separate coupled solutions together, steady TEHD lubrication considering the viscosity-temperature effect for a bidirectional thrust bearing in a pump-turbine unit is simulated combining a 3D CFD model for the oil film with a 3D FEA model for the pad and mirror plate. Cyclic symmetry condition is used in the oil film flow as more reasonable boundary conditions which avoids the oil temperature assumption at the leading and trailing edge. Deformations of the pad and mirror plate are predicted and discussed as well as the distributions of oil film thickness, pressure, temperature. The predicted temperature shows good agreement with measurements, while the pressure shows a reasonable distribution comparing with previous studies. Further analysis of the three-coupled-field reveals the reason of the high pressure and high temperature generated in the film. Finally, the influence of rotational speed of the mirror plate on the lubrication characteristics is illustrated which shows the thrust load should be balanced against the oil film temperature and pressure in optimized designs. This research proposes a thrust bearing computation method by combining CFD and FEA which can do the TEHD analysis more accurately. 展开更多
关键词 pump-turbine thrust bearing TEHD lubrication two-way coupled CFD FEA
在线阅读 下载PDF
Numerical Flow Simulation in Turbine Mode of Counter-Rotating Type Pumping Unit to Cooperate with Wind Turbine 被引量:1
14
作者 Tengen Murakami Toshiaki Kanemoto +1 位作者 Gohki Takano Risa Kasahara 《Journal of Energy and Power Engineering》 2013年第9期1770-1777,共8页
This serial research has proposed the hybrid power system combined the wind power unit with the counter-rotating type pump-turbine unit, to provide the constant output for the grid system, even at the suddenly fluctua... This serial research has proposed the hybrid power system combined the wind power unit with the counter-rotating type pump-turbine unit, to provide the constant output for the grid system, even at the suddenly fluctuating/turbulent wind circumstance. In this paper, the tandem impellers prepared for the counter-rotating type pumping unit were operated at the turbine mode, and the performances and the flow conditions were investigated numerically with accompanying the experimental results. Even though providing the pumping unit for the turbine mode, the maximum hydraulic efficiency is close to one of the counter-rotating type hydroelectric unit designed exclusively for the turbine mode. Besides, the runners/impellers of the unit work evidently so as to coincide the angular momentum change through the front runners/impellers with that through the rear runners/impellers, namely to take the axial flow at not only the inlet but also the outlet, without the guide vanes. From these results, it can be concluded that this type unit is effective to work at not only the pumping but also the turbine modes. 展开更多
关键词 pump-turbine pumping mode turbine mode power supply grid system counter-rotation.
在线阅读 下载PDF
Modeling a high output marine steam generator feedwater control system which uses parallel turbine-driven feed pumps
15
作者 邱志强 邹海 孙建华 《Journal of Marine Science and Application》 2008年第3期212-217,共6页
Parallel turbine-driven feedwater pumps are needed when ships travel at high speed. In order to study marine steam generator feedwater control systems which use parallel turbine-driven feed pumps, a mathematical model... Parallel turbine-driven feedwater pumps are needed when ships travel at high speed. In order to study marine steam generator feedwater control systems which use parallel turbine-driven feed pumps, a mathematical model of marine steam generator feedwater control system was developed which includes mathematical models of two steam generators and parallel turbine-driven feed pumps as well as mathematical models of feedwater pipes and feed regulating valves. The operating condition points of the parallel ttu-bine-driven feed pumps were calculated by the Chebyshev curve fit method. A water level controller for the steam generator and a rotary speed controller for the turbine-driven feed pumps were also included in the model. The accuracy of the mathematical models and their controllers was verified by comparing their results with those from a simulator. 展开更多
关键词 feedwater control steam generator MODELING feed pump turbine
在线阅读 下载PDF
Vibration Control of Vertical Turbine Pump by Optimization of Vane Pitch Tolerances of an Impeller Using Statistical Techniques
16
作者 Ravindra Birajdar Appasaheb Keste Shravan Gawande 《Sound & Vibration》 EI 2021年第4期305-327,共23页
The objective of the study is to find the tolerance on vane pitch dimensions of a Vertical Turbine(VT)pump impeller.For this purpose,the study is divided into two parts viz.to find the critical hydraulic eccentricity ... The objective of the study is to find the tolerance on vane pitch dimensions of a Vertical Turbine(VT)pump impeller.For this purpose,the study is divided into two parts viz.to find the critical hydraulic eccentricity of a VT pump impeller by way of numerical simulations and design of experiments to find the vane pitch tolerance using critical hydraulic eccentricity.The effect of impeller vane pitch deviations on hydraulic unbalance is examined for a vertical turbine pump using Design of Experiments(DOE).A suitable orthogonal matrix has been selected with vane pitch at different axial locations of an impeller as the control factors.Hydraulic eccentricity,which is the output of the DOE experiments is analyzed using S/N ratio,ANOM and regression analysis to find the significant control factor effecting the hydraulic unbalance and hence vibrations.The vane pitch deviation at outlet and inlet of impeller shroud geometry are found to be the most critical factor affecting the pump vibrations. 展开更多
关键词 Vertical turbine pump vibrations design of experiments hydraulic eccentricity
在线阅读 下载PDF
Simulink/MATLAB Model for Assessing the Use of a Centrifugal Pump as a Hydraulic Turbine
17
作者 Peter E. Jenkins Artem Kuryachy 《World Journal of Mechanics》 2018年第7期253-271,共19页
A centrifugal pump used as a hydraulic turbine in producing power for a microhydropower system is multifaceted. Centrifugal pumps are far more ubiquitous than turbines in the turbomachinery market, therefore being mor... A centrifugal pump used as a hydraulic turbine in producing power for a microhydropower system is multifaceted. Centrifugal pumps are far more ubiquitous than turbines in the turbomachinery market, therefore being more readily available to the consumer. Additionally, they are cheaper. Hydraulic turbines undergo rigorous CFD simulation design and testing to establish their blade geometries and ranges of operation. This results in a refined but very expensive final product. Centrifugal pumps are thus presented as a logical alternative seeing that they can physically perform the same task as a hydropower turbine albeit at a reduced efficiency. This paper presents the results of an analysis and simulation to assess the use of a centrifugal pump as a hydraulic turbine. 展开更多
关键词 CENTRIFUGAL pump HYDRAULIC turbine SIMULINK MATLAB Simulation
暂未订购
Power Stabilization System with Counter-Rotating Type Pump-Turbine Unit for Renewable Energy
18
作者 Toru Miyaji Risa Kasahara +3 位作者 Toshiaki Kanemoto Jin-Hyuk Kim Young-Seok Choi Toshihiko Umekage 《Journal of Power and Energy Engineering》 2014年第4期47-52,共6页
Traditional type pumped storage system contributes to adjust the electric power unbalance between day and night, in general. The pump-turbine unit is prepared for the power stabilization system, in this serial researc... Traditional type pumped storage system contributes to adjust the electric power unbalance between day and night, in general. The pump-turbine unit is prepared for the power stabilization system, in this serial research, to provide the constant power with good quality for the grid system, even at the suddenly fluctuating/turbulent output from renewable energies. In the unit, the angular momentum changes through the front impeller/runner must be the same as that through the rear impeller/runner, that is, the axial flow at the outlet should be the same to the axial flow at the inlet. Such flow conditions are advantageous to work at not only the pumping mode but also the turbine mode. This work discusses experimentally the performance of the unit, and verifies that this type unit is very effective to both operating modes. 展开更多
关键词 POWER STABILIZATION pump-turbine Counter-Rotation IMPELLER Generator Motor
暂未订购
New Analytical Model for Optimal Placement of Wind Turbines in Power Network under Pool and Reserve Markets Conditions
19
作者 Babak Safari Chabok Ahmad Ashouri +2 位作者 Majid Yekta Khalilsaraei Hossein Shahidi Moghadam Fariborz Ghasemi 《Energy and Power Engineering》 2016年第10期313-325,共13页
In this paper a new market based analytical model is proposed for optimal placement of Wind Turbines (WTs) in power systems. In addition to wind turbines, thermal units (THUs) and Pumped Storage Hydro Power Plants (PS... In this paper a new market based analytical model is proposed for optimal placement of Wind Turbines (WTs) in power systems. In addition to wind turbines, thermal units (THUs) and Pumped Storage Hydro Power Plants (PSHPPs) owners participate in power market. Objective function is defined as participants’ social welfare achieved from power pool and ancillary markets in yearly horizon. Wind turbines have been modeled by probability-generation tree scenarios based on statistical information. We concentrate on investment profits of WTs numbers and its generation capacity beside to PSHPPs and THUs power plants in power systems due to increase in high flexible tools for Independent system operator into the planning and operation planning time interval. For effectiveness evaluation of proposed model, simulation studies are applied on 14-Bus IEEE test power system. 展开更多
关键词 Wind turbine pumped Storage Hydro Power Plants (PSHPPs) Power Pool and Ancillary Market Independent System Operator
在线阅读 下载PDF
大水头变幅水泵水轮机水力不稳定性机理及改善方法
20
作者 陈勇 付晓龙 +2 位作者 赵旭泽 李德友 王洪杰 《排灌机械工程学报》 北大核心 2026年第2期125-132,共8页
为实现“双碳”目标,积极推动清洁能源发展,抽水蓄能技术作为保障电网安全的重要手段得到广泛应用.针对大水头水泵水轮机在运行过程中可能存在“S”形特性区引发的振动和噪声等问题,基于数值计算对大水头水泵水轮机典型工况开展研究,采... 为实现“双碳”目标,积极推动清洁能源发展,抽水蓄能技术作为保障电网安全的重要手段得到广泛应用.针对大水头水泵水轮机在运行过程中可能存在“S”形特性区引发的振动和噪声等问题,基于数值计算对大水头水泵水轮机典型工况开展研究,采用定常数值模拟方法分析“S”形特性区的压力分布和旋涡流动,发现偏离设计工况时无叶区将形成挡水环,阻碍水流顺利进入转轮,导致旋涡堵塞流动通道等情况.文中基于不稳定流动机理,提出了通过优化转轮结构改善其水力特性的解决方案,有效抑制了流道内旋涡流动,减轻了流动分离现象,从而提升了机组的运行稳定性.研究结果可为大水头变幅水泵水轮机的优化设计提供理论参考. 展开更多
关键词 水泵水轮机 “S”区不稳定特性 流动数值模拟 转轮优化 水力特性改善
在线阅读 下载PDF
上一页 1 2 85 下一页 到第
使用帮助 返回顶部