The batch splitting scheduling problem has recently become a major target in manufacturing systems, and the researchers have obtained great achievements, whereas most of existing related researches focus on equal-size...The batch splitting scheduling problem has recently become a major target in manufacturing systems, and the researchers have obtained great achievements, whereas most of existing related researches focus on equal-sized and consistent-sized batch splitting scheduling problem, and solve the problem by fixing the number of sub-batches, or the sub-batch sizes, or both. Under such circumstance and to provide a practical method for production scheduling in batch production mode, a study was made on the batch splitting scheduling problem on alternative machines, based on the objective to minimize the makespan. A scheduling approach was presented to address the variable-sized batch splitting scheduling problem in job shops trying to optimize both the number of sub-bathes and the sub-batch sizes, based on differential evolution(DE), making full use of the finding that the sum of values of genes in one chromosome remains the same before and after mutation in DE. Considering before-arrival set-up time and processing time separately, a variable-sized batch splitting scheduling model was established and a new hybrid algorithm was brought forward to solve both the batch splitting problem and the batch scheduling problem. A new parallel chromosome representation was adopted, and the batch scheduling chromosome and the batch splitting chromosome were treated separately during the global search procedure, based on self-adaptive DE and genetic crossover operator, respectively. A new local search method was further designed to gain a better performance. A solution consists of the optimum number of sub-bathes for each operation per job, the optimum batch size for each sub-batch and the optimum sequence of sub-batches. Computational experiments of four test instances and a realistic problem in a speaker workshop were performed to testify the effectiveness of the proposed scheduling method. The study takes advantage of DE's distinctive feature, and employs the algorithm as a solution approach, and thereby deepens and enriches the content of batch splitting scheduling.展开更多
Given a list of items and a sequence of variable-sized bins arriving one by one, it is NP-hard to pack the items into the bin list with a goal to minimize the total size of bins from the earliest one to the last used....Given a list of items and a sequence of variable-sized bins arriving one by one, it is NP-hard to pack the items into the bin list with a goal to minimize the total size of bins from the earliest one to the last used. In this paper a set of approximation algorithms is presented for cases in which the ability to preview at most k(〉=2) arriving bins is given. With the essential assumption that all bin sizes are not less than the largest item size, analytical results show the asymptotic worst case ratios of all k-bounded space and offiine algorithms are 2. Based on experiments by applying algorithms to instances in which item sizes and bin sizes are drawn independently from the continuous uniform distribution respectively in the interval [0,u] and [u,l ], averagecase experimental results show that, with fixed k, algorithms with the Best Fit packing(closing) rule are statistically better than those with the First Fit packing(closing) rule.展开更多
Transparent materials utilized as underwater optical windows are highly vulnerable to various forms of pollution or abrasion due to their intrinsic hydrophilic properties.This susceptibility is particularly pronounced...Transparent materials utilized as underwater optical windows are highly vulnerable to various forms of pollution or abrasion due to their intrinsic hydrophilic properties.This susceptibility is particularly pronounced in underwater environments where pollutants can impede the operation of these optical devices,significantly degrading or even compromising their optical properties.The glass catfish,known for its remarkable transparency in water,maintains surface cleanliness and clarity despite exposure to contaminants,impurities abrasion,and hydraulic pressure.Inspired by the glass catfish’s natural attributes,this study introduces a new solution named subaquatic abrasion-resistant and anti-fouling window(SAAW).Utilizing femtosecond laser ablation and electrodeposition,the SAAW is engineered by embedding fine metal bone structures into a transparent substrate and anti-fouling sliding layer,akin to the sturdy bones among catfish’s body.This approach significantly bolsters the window’s abrasion resistance and anti-fouling performance while maintaining high light transmittance.The sliding layer on the SAAW’s surface remarkably reduces the friction of various liquids,which is the reason that SAAW owns the great anti-fouling property.The SAAW demonstrates outstanding optical clarity even after enduring hundreds of sandpaper abrasions,attributing to the fine metal bone structures bearing all external forces and protecting the sliding layer of SAAW.Furthermore,it exhibits exceptional resistance to biological adhesion and underwater pressure.In a green algae environment,the window remains clean with minimal change in transmittance over one month.Moreover,it retains its wettability and anti-fouling properties when subjected to a depth of 30 m of underwater pressure for 30 d.Hence,the SAAW prepared by femtosecond laser ablation and electrodeposition presents a promising strategy for developing stable optical windows in liquid environments.展开更多
With the increase of international trade activities and the gradual melting of the polar ice cap,the importance of the Arctic route for marine transportation has been emphasized.Prediction of the polar navigation wind...With the increase of international trade activities and the gradual melting of the polar ice cap,the importance of the Arctic route for marine transportation has been emphasized.Prediction of the polar navigation window period is crucial for navigating in the Arctic route,which is of great significance to the selection of the route and the optimization of navigation.This paper introduces the establishment of a risk index system,determination of risk index weight,establishment of a risk evaluation model,and prediction algorithm for the window period.In addition,data sources of both environmental factors and ship factors are introducted,and their shortcomings are analyzed,followed by introduction of various methods involved in window prediction and analysis of their advantages and disadvantages.The quantitative risk evaluation and window period algorithm can provide a reference for the research of polar navigation window period prediction.展开更多
Preterm birth(PTB)is defined as delivery before 37 weeks of gestation.PTB is associated with increased cardiovascular risk,neurodevelopmental disorders,and other diseases in infancy,childhood,and adulthood[1].Globally...Preterm birth(PTB)is defined as delivery before 37 weeks of gestation.PTB is associated with increased cardiovascular risk,neurodevelopmental disorders,and other diseases in infancy,childhood,and adulthood[1].Globally,approximately 15 million PTB cases are reported annually,posing a huge burden on individual families and the community economy[2].In the context of climate warming,O_(3) pollution has continuously increased in many countries in recent years,including China;therefore,scientific communities and government agencies must strive to mitigate ozone pollution.展开更多
With the rapid advancement of Voice over Internet Protocol(VoIP)technology,speech steganography techniques such as Quantization Index Modulation(QIM)and Pitch Modulation Steganography(PMS)have emerged as significant c...With the rapid advancement of Voice over Internet Protocol(VoIP)technology,speech steganography techniques such as Quantization Index Modulation(QIM)and Pitch Modulation Steganography(PMS)have emerged as significant challenges to information security.These techniques embed hidden information into speech streams,making detection increasingly difficult,particularly under conditions of low embedding rates and short speech durations.Existing steganalysis methods often struggle to balance detection accuracy and computational efficiency due to their limited ability to effectively capture both temporal and spatial features of speech signals.To address these challenges,this paper proposes an Efficient Sliding Window Analysis Network(E-SWAN),a novel deep learning model specifically designed for real-time speech steganalysis.E-SWAN integrates two core modules:the LSTM Temporal Feature Miner(LTFM)and the Convolutional Key Feature Miner(CKFM).LTFM captures long-range temporal dependencies using Long Short-Term Memory networks,while CKFM identifies local spatial variations caused by steganographic embedding through convolutional operations.These modules operate within a sliding window framework,enabling efficient extraction of temporal and spatial features.Experimental results on the Chinese CNV and PMS datasets demonstrate the superior performance of E-SWAN.Under conditions of a ten-second sample duration and an embedding rate of 10%,E-SWAN achieves a detection accuracy of 62.09%on the PMS dataset,surpassing existing methods by 4.57%,and an accuracy of 82.28%on the CNV dataset,outperforming state-of-the-art methods by 7.29%.These findings validate the robustness and efficiency of E-SWAN under low embedding rates and short durations,offering a promising solution for real-time VoIP steganalysis.This work provides significant contributions to enhancing information security in digital communications.展开更多
In this paper,an improved error-rate sliding window decoder is proposed for spatially coupled low-density parity-check(SC-LDPC)codes.For the conventional sliding window decoder,the message retention mechanism causes u...In this paper,an improved error-rate sliding window decoder is proposed for spatially coupled low-density parity-check(SC-LDPC)codes.For the conventional sliding window decoder,the message retention mechanism causes unreliable messages along the edges of belief propagation(BP)decoding in the current window to be kept for subsequent window decoding.To improve the reliability of the retained messages during the window transition,a reliable termination method is embedded,where the retained messages undergo more reliable parity checks.Additionally,decoding failure is unavoidable and even causes error propagation when the number of errors exceeds the error-correcting capability of the window.To mitigate this problem,a channel value reuse mechanism is designed,where the received channel values are utilized to reinitialize the window.Furthermore,considering the complexity and performance of decoding,a feasible sliding optimized window decoding(SOWD)scheme is introduced.Finally,simulation results confirm the superior performance of the proposed SOWD scheme in both the waterfall and error floor regions.This work has great potential in the applications of wireless optical communication and fiber optic communication.展开更多
Persistent flows are defined as network flows that persist over multiple time intervals and continue to exhibit activity over extended periods,which are critical for identifying long-term behaviors and subtle security...Persistent flows are defined as network flows that persist over multiple time intervals and continue to exhibit activity over extended periods,which are critical for identifying long-term behaviors and subtle security threats.Programmable switches provide line-rate packet processing to meet the requirements of high-speed network environments,yet they are fundamentally limited in computational and memory resources.Accurate and memoryefficient persistent flow detection on programmable switches is therefore essential.However,existing approaches often rely on fixed-window sketches or multiple sketches instances,which either suffer from insufficient temporal precision or incur substantial memory overhead,making them ineffective on programmable switches.To address these challenges,we propose SP-Sketch,an innovative sliding-window-based sketch that leverages a probabilistic update mechanism to emulate slot expiration without maintaining multiple sketch instances.This innovative design significantly reduces memory consumption while preserving high detection accuracy across multiple time intervals.We provide rigorous theoretical analyses of the estimation errors,deriving precise error bounds for the proposed method,and validate our approach through comprehensive implementations on both P4 hardware switches(with Intel Tofino ASIC)and software switches(i.e.,BMv2).Experimental evaluations using real-world traffic traces demonstrate that SP-Sketch outperforms traditional methods,improving accuracy by up to 20%over baseline sliding window approaches and enhancing recall by 5%compared to non-sliding alternatives.Furthermore,SP-Sketch achieves a significant reduction in memory utilization,reducing memory consumption by up to 65%compared to traditional methods,while maintaining a robust capability to accurately track persistent flow behavior over extended time periods.展开更多
Memory is a cognitive process through which past experiences are encoded,stored,and retrieved,playing a crucial role in intelligent behavior.It is well established that the hippocampus continues to reactivate memories...Memory is a cognitive process through which past experiences are encoded,stored,and retrieved,playing a crucial role in intelligent behavior.It is well established that the hippocampus continues to reactivate memories for several days after learning,and this process primarily occurs during sleep[1,2].The prevailing view suggests that sharp-wave ripples(SWRs)during non-rapid eye movement(NREM)sleep serve as key electrophysiological signatures of memory replay[3,4].However,only a small portion of SWRs contain memory replay[5].The direct relationship among SWRs,memory replay,and memory consolidation remains an open question.Another unresolved issue is how the hippocampus simultaneously reactivates both new and old memories while preventing interference.展开更多
Regulating the freedom and distribution of H_(2)O molecules has become the decisive factor in enlarging the electrochemical stability window(ESW)of aqueous electrolytes.Compared with the water in a bulk electrolyte,H_...Regulating the freedom and distribution of H_(2)O molecules has become the decisive factor in enlarging the electrochemical stability window(ESW)of aqueous electrolytes.Compared with the water in a bulk electrolyte,H_(2)O molecules at the electrode-electrolyte interface tend to directly split under bias potential.Therefore,the composition and properties of the interfacial microenvironment are the crux for optimizing ESW.Herein,we developed a heterogel electrolyte with wide ESW(4.88 V)and satisfactory ionic conductivity(4.4 mS/cm)inspired by the bicontinuous architecture and surfactant self-assembly behavior in the ionic liquid microemulsion-based template.This electrolyte was capable of expanding the ESW through the dynamic oil/water/electrode interface ternary structure,which enriched the oil phase and assembled the hydrophobic surfactant tails at the interface to prevent H_(2)O molecules from approaching the electrode surface.Moreover,the surfactant Tween 20 and polymer network effectively suppressed the activity of H_(2)O molecules through H-bond interactions,which was beneficial in expanding the operating voltage range and improving the temperature tolerance.The prepared gel electrolyte demonstrated unparalleled adaptability in various aqueous lithium-based energy storage devices.Notably,the lithium-ion capacitor showed an extended operating voltage of 2.2 V and could provide a high power density of 1350.36 W/kg at an energy density of 6 Wh/kg.It maintained normal power output even in the challenging harsh environment,which enabled 11,000 uninterrupted charge-discharge cycles at 0℃.This work focuses on the regulation of the interfacial microdomain and the restriction of the degree of freedom of H_(2)O molecules to boost the ESW of aqueous electrolytes,providing a promising strategy for the advancement of energy storage technologies.展开更多
In photolithography,shortening the exposure wavelength from ultraviolet to extreme ultraviolet(EUV,13.5 nm)and soft X-ray region in terms of beyond EUV(BEUV,6.X nm)and water window X-ray(WWX,2.2–4.4 nm)is expected to...In photolithography,shortening the exposure wavelength from ultraviolet to extreme ultraviolet(EUV,13.5 nm)and soft X-ray region in terms of beyond EUV(BEUV,6.X nm)and water window X-ray(WWX,2.2–4.4 nm)is expected to further miniaturize the technology node down to sub-5 nm level.However,the absorption ability of molecules in these ranges,especially WWX region,is unknown,which should be very important for the utilization of energy.Herein,the molar absorption cross sections of different elements at 2.4 nm of WWX were firstly calculated and compared with the wavelengths of 13.5 nm and 6.7 nm.Based on the absorption cross sections in these ranges and density estimation results from the density-functional theory calculation,the linear absorption coefficients of typical resist materials,including metal-oxy clusters,organic small molecules,polymers,and photoacid generators(PAGs),are evaluated.The analysis suggests that the Zn cluster has higher absorption in BEUV,whereas the Sn cluster has higher absorption in WWX.Doping PAGs with high EUV absorption atoms improves chemically amplified photoresist(CAR)polymer absorption performance.However,for WWX,it is necessary to introduce an absorption layer containing high WWX absorption elements such as Zr,Sn,and Hf to increase the WWX absorption.展开更多
Convolutional neural network(CNN)with the encoder-decoder structure is popular in medical image segmentation due to its excellent local feature extraction ability but it faces limitations in capturing the global featu...Convolutional neural network(CNN)with the encoder-decoder structure is popular in medical image segmentation due to its excellent local feature extraction ability but it faces limitations in capturing the global feature.The transformer can extract the global information well but adapting it to small medical datasets is challenging and its computational complexity can be heavy.In this work,a serial and parallel network is proposed for the accurate 3D medical image segmentation by combining CNN and transformer and promoting feature interactions across various semantic levels.The core components of the proposed method include the cross window self-attention based transformer(CWST)and multi-scale local enhanced(MLE)modules.The CWST module enhances the global context understanding by partitioning 3D images into non-overlapping windows and calculating sparse global attention between windows.The MLE module selectively fuses features by computing the voxel attention between different branch features,and uses convolution to strengthen the dense local information.The experiments on the prostate,atrium,and pancreas MR/CT image datasets consistently demonstrate the advantage of the proposed method over six popular segmentation models in both qualitative evaluation and quantitative indexes such as dice similarity coefficient,Intersection over Union,95%Hausdorff distance and average symmetric surface distance.展开更多
The deep convolutional neural network U-net has been introduced into adaptive subtraction, which is a critical step in effectively suppressing seismic multiples. The U-net approach has higher precision than the tradit...The deep convolutional neural network U-net has been introduced into adaptive subtraction, which is a critical step in effectively suppressing seismic multiples. The U-net approach has higher precision than the traditional linear regression approach. However, the existing 2D U-net approach with 2D data windows can not deal with elaborate discrepancies between the actual and simulated multiples along the gather direction. It may lead to erroneous preservation of primaries or generate obvious vestigial multiples, especially in complex media. To further enhance the multiple suppression accuracy, we present an adaptive subtraction approach utilizing 3D U-net architecture, which can adaptively separate primaries and multiples utilizing 3D windows. The utilization of 3D windows allows for enhanced depiction of spatial continuity and anisotropy of seismic events along the gather direction in comparison to 2D windows. The 3D U-net approach with 3D windows can more effectively preserve the continuity of primaries and manage the complex disparities between the actual and simulated multiples. The proposed 3D U-net approach exhibits 1 dB improvement in the signal-to-noise ratio compared to the 2D U-net approach, as observed in the synthesis data section, and exhibits more outstanding performance in the preservation of primaries and removal of residual multiples in both synthesis and reality data sections. Moreover, to expedite network training in our proposed 3D U-net approach we employ the transfer learning (TL) strategy by utilizing the network parameters of 3D U-net estimated in the preceding data segment as the initial network parameters of 3D U-net for the subsequent data segment. In the reality data section, the 3D U-net approach incorporating TL reduces the computational expense by 70% compared to the one without TL.展开更多
基金supported by National Hi-tech Research and Development Program of China (863 Program, Grant No. 2007AA04Z155)National Natural Science Foundation of China (Grant No. 60970021)Zhejiang Provincial Natural Science Foundation of China (Grant No. Y1090592)
文摘The batch splitting scheduling problem has recently become a major target in manufacturing systems, and the researchers have obtained great achievements, whereas most of existing related researches focus on equal-sized and consistent-sized batch splitting scheduling problem, and solve the problem by fixing the number of sub-batches, or the sub-batch sizes, or both. Under such circumstance and to provide a practical method for production scheduling in batch production mode, a study was made on the batch splitting scheduling problem on alternative machines, based on the objective to minimize the makespan. A scheduling approach was presented to address the variable-sized batch splitting scheduling problem in job shops trying to optimize both the number of sub-bathes and the sub-batch sizes, based on differential evolution(DE), making full use of the finding that the sum of values of genes in one chromosome remains the same before and after mutation in DE. Considering before-arrival set-up time and processing time separately, a variable-sized batch splitting scheduling model was established and a new hybrid algorithm was brought forward to solve both the batch splitting problem and the batch scheduling problem. A new parallel chromosome representation was adopted, and the batch scheduling chromosome and the batch splitting chromosome were treated separately during the global search procedure, based on self-adaptive DE and genetic crossover operator, respectively. A new local search method was further designed to gain a better performance. A solution consists of the optimum number of sub-bathes for each operation per job, the optimum batch size for each sub-batch and the optimum sequence of sub-batches. Computational experiments of four test instances and a realistic problem in a speaker workshop were performed to testify the effectiveness of the proposed scheduling method. The study takes advantage of DE's distinctive feature, and employs the algorithm as a solution approach, and thereby deepens and enriches the content of batch splitting scheduling.
文摘Given a list of items and a sequence of variable-sized bins arriving one by one, it is NP-hard to pack the items into the bin list with a goal to minimize the total size of bins from the earliest one to the last used. In this paper a set of approximation algorithms is presented for cases in which the ability to preview at most k(〉=2) arriving bins is given. With the essential assumption that all bin sizes are not less than the largest item size, analytical results show the asymptotic worst case ratios of all k-bounded space and offiine algorithms are 2. Based on experiments by applying algorithms to instances in which item sizes and bin sizes are drawn independently from the continuous uniform distribution respectively in the interval [0,u] and [u,l ], averagecase experimental results show that, with fixed k, algorithms with the Best Fit packing(closing) rule are statistically better than those with the First Fit packing(closing) rule.
基金supported by the National Science Foundation of China under Grant Nos(Nos.12127806,62175195)the International Joint Research Laboratory for Micro/Nano Manufacturing and Measurement Technologies。
文摘Transparent materials utilized as underwater optical windows are highly vulnerable to various forms of pollution or abrasion due to their intrinsic hydrophilic properties.This susceptibility is particularly pronounced in underwater environments where pollutants can impede the operation of these optical devices,significantly degrading or even compromising their optical properties.The glass catfish,known for its remarkable transparency in water,maintains surface cleanliness and clarity despite exposure to contaminants,impurities abrasion,and hydraulic pressure.Inspired by the glass catfish’s natural attributes,this study introduces a new solution named subaquatic abrasion-resistant and anti-fouling window(SAAW).Utilizing femtosecond laser ablation and electrodeposition,the SAAW is engineered by embedding fine metal bone structures into a transparent substrate and anti-fouling sliding layer,akin to the sturdy bones among catfish’s body.This approach significantly bolsters the window’s abrasion resistance and anti-fouling performance while maintaining high light transmittance.The sliding layer on the SAAW’s surface remarkably reduces the friction of various liquids,which is the reason that SAAW owns the great anti-fouling property.The SAAW demonstrates outstanding optical clarity even after enduring hundreds of sandpaper abrasions,attributing to the fine metal bone structures bearing all external forces and protecting the sliding layer of SAAW.Furthermore,it exhibits exceptional resistance to biological adhesion and underwater pressure.In a green algae environment,the window remains clean with minimal change in transmittance over one month.Moreover,it retains its wettability and anti-fouling properties when subjected to a depth of 30 m of underwater pressure for 30 d.Hence,the SAAW prepared by femtosecond laser ablation and electrodeposition presents a promising strategy for developing stable optical windows in liquid environments.
文摘With the increase of international trade activities and the gradual melting of the polar ice cap,the importance of the Arctic route for marine transportation has been emphasized.Prediction of the polar navigation window period is crucial for navigating in the Arctic route,which is of great significance to the selection of the route and the optimization of navigation.This paper introduces the establishment of a risk index system,determination of risk index weight,establishment of a risk evaluation model,and prediction algorithm for the window period.In addition,data sources of both environmental factors and ship factors are introducted,and their shortcomings are analyzed,followed by introduction of various methods involved in window prediction and analysis of their advantages and disadvantages.The quantitative risk evaluation and window period algorithm can provide a reference for the research of polar navigation window period prediction.
基金supported by the Natural Science Foundation of Henan Province[grant number:242300420115]Key Scientific Research Projects in Universities of Henan Province[grant number:23A330006].
文摘Preterm birth(PTB)is defined as delivery before 37 weeks of gestation.PTB is associated with increased cardiovascular risk,neurodevelopmental disorders,and other diseases in infancy,childhood,and adulthood[1].Globally,approximately 15 million PTB cases are reported annually,posing a huge burden on individual families and the community economy[2].In the context of climate warming,O_(3) pollution has continuously increased in many countries in recent years,including China;therefore,scientific communities and government agencies must strive to mitigate ozone pollution.
基金supported in part by the Zhejiang Provincial Natural Science Foundation of China under Grant LQ20F020004in part by the National College Student Innovation and Research Training Program under Grant 202313283002.
文摘With the rapid advancement of Voice over Internet Protocol(VoIP)technology,speech steganography techniques such as Quantization Index Modulation(QIM)and Pitch Modulation Steganography(PMS)have emerged as significant challenges to information security.These techniques embed hidden information into speech streams,making detection increasingly difficult,particularly under conditions of low embedding rates and short speech durations.Existing steganalysis methods often struggle to balance detection accuracy and computational efficiency due to their limited ability to effectively capture both temporal and spatial features of speech signals.To address these challenges,this paper proposes an Efficient Sliding Window Analysis Network(E-SWAN),a novel deep learning model specifically designed for real-time speech steganalysis.E-SWAN integrates two core modules:the LSTM Temporal Feature Miner(LTFM)and the Convolutional Key Feature Miner(CKFM).LTFM captures long-range temporal dependencies using Long Short-Term Memory networks,while CKFM identifies local spatial variations caused by steganographic embedding through convolutional operations.These modules operate within a sliding window framework,enabling efficient extraction of temporal and spatial features.Experimental results on the Chinese CNV and PMS datasets demonstrate the superior performance of E-SWAN.Under conditions of a ten-second sample duration and an embedding rate of 10%,E-SWAN achieves a detection accuracy of 62.09%on the PMS dataset,surpassing existing methods by 4.57%,and an accuracy of 82.28%on the CNV dataset,outperforming state-of-the-art methods by 7.29%.These findings validate the robustness and efficiency of E-SWAN under low embedding rates and short durations,offering a promising solution for real-time VoIP steganalysis.This work provides significant contributions to enhancing information security in digital communications.
基金supported by the National Natural Science Foundation of China (No.62275193)。
文摘In this paper,an improved error-rate sliding window decoder is proposed for spatially coupled low-density parity-check(SC-LDPC)codes.For the conventional sliding window decoder,the message retention mechanism causes unreliable messages along the edges of belief propagation(BP)decoding in the current window to be kept for subsequent window decoding.To improve the reliability of the retained messages during the window transition,a reliable termination method is embedded,where the retained messages undergo more reliable parity checks.Additionally,decoding failure is unavoidable and even causes error propagation when the number of errors exceeds the error-correcting capability of the window.To mitigate this problem,a channel value reuse mechanism is designed,where the received channel values are utilized to reinitialize the window.Furthermore,considering the complexity and performance of decoding,a feasible sliding optimized window decoding(SOWD)scheme is introduced.Finally,simulation results confirm the superior performance of the proposed SOWD scheme in both the waterfall and error floor regions.This work has great potential in the applications of wireless optical communication and fiber optic communication.
基金supported by the National Undergraduate Innovation and Entrepreneurship Training Program of China(Project No.202510559076)at Jinan University,a nationwide initiative administered by the Ministry of Educationthe National Natural Science Foundation of China(NSFC)under Grant No.62172189.
文摘Persistent flows are defined as network flows that persist over multiple time intervals and continue to exhibit activity over extended periods,which are critical for identifying long-term behaviors and subtle security threats.Programmable switches provide line-rate packet processing to meet the requirements of high-speed network environments,yet they are fundamentally limited in computational and memory resources.Accurate and memoryefficient persistent flow detection on programmable switches is therefore essential.However,existing approaches often rely on fixed-window sketches or multiple sketches instances,which either suffer from insufficient temporal precision or incur substantial memory overhead,making them ineffective on programmable switches.To address these challenges,we propose SP-Sketch,an innovative sliding-window-based sketch that leverages a probabilistic update mechanism to emulate slot expiration without maintaining multiple sketch instances.This innovative design significantly reduces memory consumption while preserving high detection accuracy across multiple time intervals.We provide rigorous theoretical analyses of the estimation errors,deriving precise error bounds for the proposed method,and validate our approach through comprehensive implementations on both P4 hardware switches(with Intel Tofino ASIC)and software switches(i.e.,BMv2).Experimental evaluations using real-world traffic traces demonstrate that SP-Sketch outperforms traditional methods,improving accuracy by up to 20%over baseline sliding window approaches and enhancing recall by 5%compared to non-sliding alternatives.Furthermore,SP-Sketch achieves a significant reduction in memory utilization,reducing memory consumption by up to 65%compared to traditional methods,while maintaining a robust capability to accurately track persistent flow behavior over extended time periods.
基金supported by the National Natural Science Foundation of China(32371028,32300822,U24A20373,and 82071177)the Shanghai Rising-Star Program(24QA2704800)+2 种基金the Shanghai Jiao Tong University 2030 InitiativeShanghai Municipal Health Commission(202340046)the Fund for Excellent Young Scholars of Shanghai Ninth People's Hospital,Shanghai Jiao Tong University School of Medicine.
文摘Memory is a cognitive process through which past experiences are encoded,stored,and retrieved,playing a crucial role in intelligent behavior.It is well established that the hippocampus continues to reactivate memories for several days after learning,and this process primarily occurs during sleep[1,2].The prevailing view suggests that sharp-wave ripples(SWRs)during non-rapid eye movement(NREM)sleep serve as key electrophysiological signatures of memory replay[3,4].However,only a small portion of SWRs contain memory replay[5].The direct relationship among SWRs,memory replay,and memory consolidation remains an open question.Another unresolved issue is how the hippocampus simultaneously reactivates both new and old memories while preventing interference.
基金supported by the National Natural Science Foundation of China(Grant Nos.22032003 and 22072073)。
文摘Regulating the freedom and distribution of H_(2)O molecules has become the decisive factor in enlarging the electrochemical stability window(ESW)of aqueous electrolytes.Compared with the water in a bulk electrolyte,H_(2)O molecules at the electrode-electrolyte interface tend to directly split under bias potential.Therefore,the composition and properties of the interfacial microenvironment are the crux for optimizing ESW.Herein,we developed a heterogel electrolyte with wide ESW(4.88 V)and satisfactory ionic conductivity(4.4 mS/cm)inspired by the bicontinuous architecture and surfactant self-assembly behavior in the ionic liquid microemulsion-based template.This electrolyte was capable of expanding the ESW through the dynamic oil/water/electrode interface ternary structure,which enriched the oil phase and assembled the hydrophobic surfactant tails at the interface to prevent H_(2)O molecules from approaching the electrode surface.Moreover,the surfactant Tween 20 and polymer network effectively suppressed the activity of H_(2)O molecules through H-bond interactions,which was beneficial in expanding the operating voltage range and improving the temperature tolerance.The prepared gel electrolyte demonstrated unparalleled adaptability in various aqueous lithium-based energy storage devices.Notably,the lithium-ion capacitor showed an extended operating voltage of 2.2 V and could provide a high power density of 1350.36 W/kg at an energy density of 6 Wh/kg.It maintained normal power output even in the challenging harsh environment,which enabled 11,000 uninterrupted charge-discharge cycles at 0℃.This work focuses on the regulation of the interfacial microdomain and the restriction of the degree of freedom of H_(2)O molecules to boost the ESW of aqueous electrolytes,providing a promising strategy for the advancement of energy storage technologies.
基金supported by the National Natural Science Foundation of China(22090011,22378052)the Fundamental Research Funds for China Central Universities(DUT22LAB608 and DUT20RC(3)030)+1 种基金Liaoning Binhai Laboratory(LBLB-2023-03)Key R&D Program of Shandong Province(2021CXGC010308).
文摘In photolithography,shortening the exposure wavelength from ultraviolet to extreme ultraviolet(EUV,13.5 nm)and soft X-ray region in terms of beyond EUV(BEUV,6.X nm)and water window X-ray(WWX,2.2–4.4 nm)is expected to further miniaturize the technology node down to sub-5 nm level.However,the absorption ability of molecules in these ranges,especially WWX region,is unknown,which should be very important for the utilization of energy.Herein,the molar absorption cross sections of different elements at 2.4 nm of WWX were firstly calculated and compared with the wavelengths of 13.5 nm and 6.7 nm.Based on the absorption cross sections in these ranges and density estimation results from the density-functional theory calculation,the linear absorption coefficients of typical resist materials,including metal-oxy clusters,organic small molecules,polymers,and photoacid generators(PAGs),are evaluated.The analysis suggests that the Zn cluster has higher absorption in BEUV,whereas the Sn cluster has higher absorption in WWX.Doping PAGs with high EUV absorption atoms improves chemically amplified photoresist(CAR)polymer absorption performance.However,for WWX,it is necessary to introduce an absorption layer containing high WWX absorption elements such as Zr,Sn,and Hf to increase the WWX absorption.
基金National Key Research and Development Program of China,Grant/Award Number:2018YFE0206900China Postdoctoral Science Foundation,Grant/Award Number:2023M731204+2 种基金The Open Project of Key Laboratory for Quality Evaluation of Ultrasound Surgical Equipment of National Medical Products Administration,Grant/Award Number:SMDTKL-2023-1-01The Hubei Province Key Research and Development Project,Grant/Award Number:2023BCB007CAAI-Huawei MindSpore Open Fund。
文摘Convolutional neural network(CNN)with the encoder-decoder structure is popular in medical image segmentation due to its excellent local feature extraction ability but it faces limitations in capturing the global feature.The transformer can extract the global information well but adapting it to small medical datasets is challenging and its computational complexity can be heavy.In this work,a serial and parallel network is proposed for the accurate 3D medical image segmentation by combining CNN and transformer and promoting feature interactions across various semantic levels.The core components of the proposed method include the cross window self-attention based transformer(CWST)and multi-scale local enhanced(MLE)modules.The CWST module enhances the global context understanding by partitioning 3D images into non-overlapping windows and calculating sparse global attention between windows.The MLE module selectively fuses features by computing the voxel attention between different branch features,and uses convolution to strengthen the dense local information.The experiments on the prostate,atrium,and pancreas MR/CT image datasets consistently demonstrate the advantage of the proposed method over six popular segmentation models in both qualitative evaluation and quantitative indexes such as dice similarity coefficient,Intersection over Union,95%Hausdorff distance and average symmetric surface distance.
基金supported by National Natural Science Foundation of China(42364008,41804110)in part by Guizhou Provincial Basic Research Program(Natural Science)(ZK[2022]060)+1 种基金in part by China Postdoctoral Science Foundation(2022M723127)in part by Youth Innovation Team Project of Shandong Provincial Education Department(2022KJ141).
文摘The deep convolutional neural network U-net has been introduced into adaptive subtraction, which is a critical step in effectively suppressing seismic multiples. The U-net approach has higher precision than the traditional linear regression approach. However, the existing 2D U-net approach with 2D data windows can not deal with elaborate discrepancies between the actual and simulated multiples along the gather direction. It may lead to erroneous preservation of primaries or generate obvious vestigial multiples, especially in complex media. To further enhance the multiple suppression accuracy, we present an adaptive subtraction approach utilizing 3D U-net architecture, which can adaptively separate primaries and multiples utilizing 3D windows. The utilization of 3D windows allows for enhanced depiction of spatial continuity and anisotropy of seismic events along the gather direction in comparison to 2D windows. The 3D U-net approach with 3D windows can more effectively preserve the continuity of primaries and manage the complex disparities between the actual and simulated multiples. The proposed 3D U-net approach exhibits 1 dB improvement in the signal-to-noise ratio compared to the 2D U-net approach, as observed in the synthesis data section, and exhibits more outstanding performance in the preservation of primaries and removal of residual multiples in both synthesis and reality data sections. Moreover, to expedite network training in our proposed 3D U-net approach we employ the transfer learning (TL) strategy by utilizing the network parameters of 3D U-net estimated in the preceding data segment as the initial network parameters of 3D U-net for the subsequent data segment. In the reality data section, the 3D U-net approach incorporating TL reduces the computational expense by 70% compared to the one without TL.