A new approach is proposed to analyze the settlement behavior for single pile embedded in layered soils. Firstly, soil layers surrounding pile shaft are simulated by using distributed Voigt model, and finite soil laye...A new approach is proposed to analyze the settlement behavior for single pile embedded in layered soils. Firstly, soil layers surrounding pile shaft are simulated by using distributed Voigt model, and finite soil layers under the pile end are assumed to be virtual soil-pile whose cross-section area is the same as that of the pile shaft. Then, by means of Laplace transform and impedance function transfer method to solve the static equilibrium equation of pile, the analytical solution of the displacement impedance fimction at the pile head is derived. Furthermore, the analytical solution of the settlement at the head of single pile is theoretically derived by virtue of convolution theorem. Based on these solutions, the influences of parameters of soil-pile system on the settlement behavior for single pile are analyzed. Also, comparison of the load-settlement response for two well-instrumented field tests in multilayered soils is given to demonstrate the effectiveness and accuracy of the proposed approach. It can be noted that the presented solution can be used to calculate the settlement of single pile for the preliminary design of pile foundation.展开更多
Horizontal impedance functions of inclined single piles are measured experimentally for model soil-pile systems with both the effects of local soil nonlinearity and resonant characteristics.Two practical pile inclinat...Horizontal impedance functions of inclined single piles are measured experimentally for model soil-pile systems with both the effects of local soil nonlinearity and resonant characteristics.Two practical pile inclinations of 5掳 and 10掳 in addition to a vertical pile embedded in cohesionless soil and subjected to lateral harmonic pile head loadings for a wide range of frequencies are considered.Results obtained with low-to-high amplitude of lateral loadings on model soil-pile systems encased in a laminar shear box show that the local nonlinearities have a profound impact on the horizontal impedance functions of piles.Horizontal impedance functions of inclined piles are found to be smaller than the vertical pile and the values decrease as the angle of pile inclination increases.Distinct values of horizontal impedance functions are obtained for the 'positive' and 'negative' cycles of harmonic loadings,leading to asymmetric force-displacement relationships for the inclined piles.Validation of these experimental results is carried out through three-dimensional nonlinear finite element analyses,and the results from the numerical models are in good agreement with the experimental data.Sensitivity analyses conducted on the numerical models suggest that the consideration of local nonlinearity at the vicinity of the soil-pile interface influence the response of the soil-pile systems.展开更多
This paper describes a quasi-static test program featuring lateral cyclic loading on single piles in sandy soil. The tests were conducted on 18 aluminum model piles with different cross sections and lateral load eccen...This paper describes a quasi-static test program featuring lateral cyclic loading on single piles in sandy soil. The tests were conducted on 18 aluminum model piles with different cross sections and lateral load eccentricity ratios, e/d, (e is the lateral load eccentricity and d is the diameter of pile) of 0, 4 and 8, embedded in sand with a relative density of 30% and 70%. The experimental results include lateral load-displacement hysteresis loops, skeleton curves and energy dissipation curves. Lateral capacity, ductility and energy dissipation capacity of single piles under seismic load were evaluated in detail. The lateral capacities and the energy dissipation capacity of piles in dense sand were much higher than in loose sand. When embedded in loose sand, the maximum lateral load and the maximum lateral displacement of piles increased as e/d increased. On the contrary, when embedded in dense sand, the maximum lateral load of piles decreased as e/d increased. Piles with a higher load eccentricity ratio experienced higher energy dissipation capacity than piles with e/d of 0 in both dense and loose sand. At a given level of displacement, piles with circular cross sections provided the best energy dissipation capacity in both loose and dense sand.展开更多
The objective is to develop an approach for the determination of the target reliability index for serviceability limit state(SLS) of single piles. This contributes to conducting the SLS reliability-based design(RBD) o...The objective is to develop an approach for the determination of the target reliability index for serviceability limit state(SLS) of single piles. This contributes to conducting the SLS reliability-based design(RBD) of piles. Based on a two-parameter,hyperbolic curve-fitting equation describing the load-settlement relation of piles, the SLS model factor is defined. Then, taking into account the uncertainties of load-settlement model, load and bearing capacity of piles, the formula for computing the SLS reliability index(βsls) is obtained using the mean value first order second moment(MVFOSM) method. Meanwhile, the limit state function for conducting the SLS reliability analysis by the Monte Carlo simulation(MCS) method is established. These two methods are finally applied to determine the SLS target reliability index. Herein, the limiting tolerable settlement(slt) is treated as a random variable. For illustration, four load test databases from South Africa are compiled again to conduct reliability analysis and present the recommended target reliability indices. The results indicate that the MVFOSM method overestimates βsls compared to that computed by the MCS method. Besides, both factor of safety(FS) and slt are key factors influencing βsls, so the combination of FS and βsls is welcome to be used for the SLS reliability analysis of piles when slt is determined. For smaller slt, pile types and soils conditions have significant influence on the SLS target reliability indices; for larger slt, slt is the major factor having influence on the SLS target reliability indices. This proves that slt is the most key parameter for the determination of the SLS target reliability index.展开更多
Permafrost is widely distributed in China and around the world.In permafrost regions,soil frost heave and thawing are severe and frequent,and can destabilize pile foundations.To this end,a finite element model of a si...Permafrost is widely distributed in China and around the world.In permafrost regions,soil frost heave and thawing are severe and frequent,and can destabilize pile foundations.To this end,a finite element model of a single pile in frozen soil is established to investigate the frost heave and frost jacking response to ensure its safety in the Qinghai-Tibet Plateau.Firstly,a hydro-thermal coupling model of a single pile in frozen soil is established based on coupling parameters and initial and boundary conditions.Then the temperature and moisture distributions are analyzed through the established coupling model.A hydro-thermo-mechanical coupling model is developed by importing the ice content and temperature results.Simulation results indicate that the amount of frost heave is greater at locations closer to the ground surface,and the displacement is smaller for frozen soil that is closer to the side of the pile.The results on frost jacking behavior of piles from this study can serve as a reference for the design,construction and maintenance of foundations.展开更多
In this paper, a single-column structure used as well-head platform is studied. The loads of wave and current exerted on the single-column will be greatly reduced, therefore the cost of the structure will be decreased...In this paper, a single-column structure used as well-head platform is studied. The loads of wave and current exerted on the single-column will be greatly reduced, therefore the cost of the structure will be decreased. The advantages of the single-column structure compared with ordinary jacket structure are explained. A dynamic analysis of this type of structure is made and some problems related to dynamic analysis are solved. In order to check the reliability of computation theory and programme, model tests have been carried out. However, as space is limited, the conclusion of tests will be introduced in another paper. Therefore, this type of structure is applicable for proctical engineering.展开更多
基金Project(50879077) supported by the National Natural Science Foundation of China
文摘A new approach is proposed to analyze the settlement behavior for single pile embedded in layered soils. Firstly, soil layers surrounding pile shaft are simulated by using distributed Voigt model, and finite soil layers under the pile end are assumed to be virtual soil-pile whose cross-section area is the same as that of the pile shaft. Then, by means of Laplace transform and impedance function transfer method to solve the static equilibrium equation of pile, the analytical solution of the displacement impedance fimction at the pile head is derived. Furthermore, the analytical solution of the settlement at the head of single pile is theoretically derived by virtue of convolution theorem. Based on these solutions, the influences of parameters of soil-pile system on the settlement behavior for single pile are analyzed. Also, comparison of the load-settlement response for two well-instrumented field tests in multilayered soils is given to demonstrate the effectiveness and accuracy of the proposed approach. It can be noted that the presented solution can be used to calculate the settlement of single pile for the preliminary design of pile foundation.
文摘Horizontal impedance functions of inclined single piles are measured experimentally for model soil-pile systems with both the effects of local soil nonlinearity and resonant characteristics.Two practical pile inclinations of 5掳 and 10掳 in addition to a vertical pile embedded in cohesionless soil and subjected to lateral harmonic pile head loadings for a wide range of frequencies are considered.Results obtained with low-to-high amplitude of lateral loadings on model soil-pile systems encased in a laminar shear box show that the local nonlinearities have a profound impact on the horizontal impedance functions of piles.Horizontal impedance functions of inclined piles are found to be smaller than the vertical pile and the values decrease as the angle of pile inclination increases.Distinct values of horizontal impedance functions are obtained for the 'positive' and 'negative' cycles of harmonic loadings,leading to asymmetric force-displacement relationships for the inclined piles.Validation of these experimental results is carried out through three-dimensional nonlinear finite element analyses,and the results from the numerical models are in good agreement with the experimental data.Sensitivity analyses conducted on the numerical models suggest that the consideration of local nonlinearity at the vicinity of the soil-pile interface influence the response of the soil-pile systems.
基金Thailand Research Fund and Commission on Higher Education,Ministry of Education,Thailand Under Grant No.MRG5180268
文摘This paper describes a quasi-static test program featuring lateral cyclic loading on single piles in sandy soil. The tests were conducted on 18 aluminum model piles with different cross sections and lateral load eccentricity ratios, e/d, (e is the lateral load eccentricity and d is the diameter of pile) of 0, 4 and 8, embedded in sand with a relative density of 30% and 70%. The experimental results include lateral load-displacement hysteresis loops, skeleton curves and energy dissipation curves. Lateral capacity, ductility and energy dissipation capacity of single piles under seismic load were evaluated in detail. The lateral capacities and the energy dissipation capacity of piles in dense sand were much higher than in loose sand. When embedded in loose sand, the maximum lateral load and the maximum lateral displacement of piles increased as e/d increased. On the contrary, when embedded in dense sand, the maximum lateral load of piles decreased as e/d increased. Piles with a higher load eccentricity ratio experienced higher energy dissipation capacity than piles with e/d of 0 in both dense and loose sand. At a given level of displacement, piles with circular cross sections provided the best energy dissipation capacity in both loose and dense sand.
基金Projects(51278216,51308241)supported by the National Natural Science Foundation of ChinaProject(2013BS010)supported by the Funds of Henan University of Technology for High-level Talents,China
文摘The objective is to develop an approach for the determination of the target reliability index for serviceability limit state(SLS) of single piles. This contributes to conducting the SLS reliability-based design(RBD) of piles. Based on a two-parameter,hyperbolic curve-fitting equation describing the load-settlement relation of piles, the SLS model factor is defined. Then, taking into account the uncertainties of load-settlement model, load and bearing capacity of piles, the formula for computing the SLS reliability index(βsls) is obtained using the mean value first order second moment(MVFOSM) method. Meanwhile, the limit state function for conducting the SLS reliability analysis by the Monte Carlo simulation(MCS) method is established. These two methods are finally applied to determine the SLS target reliability index. Herein, the limiting tolerable settlement(slt) is treated as a random variable. For illustration, four load test databases from South Africa are compiled again to conduct reliability analysis and present the recommended target reliability indices. The results indicate that the MVFOSM method overestimates βsls compared to that computed by the MCS method. Besides, both factor of safety(FS) and slt are key factors influencing βsls, so the combination of FS and βsls is welcome to be used for the SLS reliability analysis of piles when slt is determined. For smaller slt, pile types and soils conditions have significant influence on the SLS target reliability indices; for larger slt, slt is the major factor having influence on the SLS target reliability indices. This proves that slt is the most key parameter for the determination of the SLS target reliability index.
基金supported by the National Natural Science Foundation of China(Nos.42071078,41731281 and 41701068)the Natural Science Foundation of Qinghai Province,China(No.2021-ZJ-908).
文摘Permafrost is widely distributed in China and around the world.In permafrost regions,soil frost heave and thawing are severe and frequent,and can destabilize pile foundations.To this end,a finite element model of a single pile in frozen soil is established to investigate the frost heave and frost jacking response to ensure its safety in the Qinghai-Tibet Plateau.Firstly,a hydro-thermal coupling model of a single pile in frozen soil is established based on coupling parameters and initial and boundary conditions.Then the temperature and moisture distributions are analyzed through the established coupling model.A hydro-thermo-mechanical coupling model is developed by importing the ice content and temperature results.Simulation results indicate that the amount of frost heave is greater at locations closer to the ground surface,and the displacement is smaller for frozen soil that is closer to the side of the pile.The results on frost jacking behavior of piles from this study can serve as a reference for the design,construction and maintenance of foundations.
文摘In this paper, a single-column structure used as well-head platform is studied. The loads of wave and current exerted on the single-column will be greatly reduced, therefore the cost of the structure will be decreased. The advantages of the single-column structure compared with ordinary jacket structure are explained. A dynamic analysis of this type of structure is made and some problems related to dynamic analysis are solved. In order to check the reliability of computation theory and programme, model tests have been carried out. However, as space is limited, the conclusion of tests will be introduced in another paper. Therefore, this type of structure is applicable for proctical engineering.