Sampling studies in North Dakota conducted from 1994 to 2003 showed that variable-rate N application could be practically directed with zone soil sampling. Results from variable-rate N studies using zone soil sampling...Sampling studies in North Dakota conducted from 1994 to 2003 showed that variable-rate N application could be practically directed with zone soil sampling. Results from variable-rate N studies using zone soil sampling were often less than rewarding due in part to the use of a whole-field predicted yield-based formula for developing the N recommendation in each zone. Nitrogen rate studies on spring wheat and durum were established in 2005 through 2009 with the objective to reexamine N recommendations and construct a new system if necessary. The results of the study and archived wheat N response data showed that the state should be divided into three separate N response regions. Within each region historic yields from low to high productivity were defined. The gross N rate was determined using the return-to-N concept developed in the US corn-belt states but with additional consideration for wheat protein value The gross N rate is then modified by credits for previous crop, soil test N from zone soil sampling, tillage systems, excessive straw from the previous year, relative susceptibility to nitrate leaching or denitrification. Finally, the user is encouraged to use common sense and consider whether particular fields have characteristics that require more or less N fertilizer than suggested by the recommendation formulas.展开更多
To adjust the variance of source rate in linear broadcast networks, global encoding kernels should have corresponding dimensions to instruct the decoding process. The algorithm of constructing such global encoding ker...To adjust the variance of source rate in linear broadcast networks, global encoding kernels should have corresponding dimensions to instruct the decoding process. The algorithm of constructing such global encoding kernels is to adjust heterogeneous network to possible link failures. Linear algebra, graph theory and group theory are applied to construct one series of global encoding kernels which are applicable to all source rates. The effectiveness and existence of such global encoding kernels are proved. Based on 2 information flow, the algorithm of construction is explicitly given within polynomial time O(|E| |T|.ω^2max), and the memory complexity of algorithm is O(|E|). Both time and memory complexity of this algorithm proposed can be O(ωmax) less than those of algorithms in related works.展开更多
Fong et al.analyzed variable-rate linear network coding for linear broadcast.However,the authors didn't investigate it for the other three types of linear network codes.In this paper,by simple and clear proofs,it ...Fong et al.analyzed variable-rate linear network coding for linear broadcast.However,the authors didn't investigate it for the other three types of linear network codes.In this paper,by simple and clear proofs,it is found that there are similar results for variable-rate linear generic and linear dispersion if the field size is large enough.It means that linear generics and linear dispersions of different dimensions can be implemented on the same network,while each non-source node is required to store only one copy of the local encoding kernel within a session.Moreover,an example is given to show that there isn't a similar result for linear multicast.展开更多
In order to increase the applying rate of liquid fertilizer and reduce environmental pollution, a slave computer control system for applying variable-rate liquid fertilizer was designed. The system used SMC as core pr...In order to increase the applying rate of liquid fertilizer and reduce environmental pollution, a slave computer control system for applying variable-rate liquid fertilizer was designed. The system used SMC as core processor and electrically controlled pressure regulator as execution component. The characteristic equation of the system was obtained by using classical control theory. Results indicated that the characteristic equation met the requirements of routh-criterion, which indicated the working process of the system was stable. Performance of the slave computer was verified via bench tests. Results demonstrated that there was no significant influence on the response from interclass error. The fertilization error was less than 0.9, and the fertilization accuracy was larger than 97%. The liquid fertilizer emitted by the fertilizing devices had no significant difference in uniformity, which met the demands of the slave computer control system for applying variable-rate liquid fertilizer.展开更多
By extending the notion of the minimum distance for linear network error correction code(LNEC), this paper introduces the concept of generalized minimum rank distance(GMRD) of variable-rate linear network error correc...By extending the notion of the minimum distance for linear network error correction code(LNEC), this paper introduces the concept of generalized minimum rank distance(GMRD) of variable-rate linear network error correction codes. The basic properties of GMRD are investigated. It is proved that GMRD can characterize the error correction/detection capability of variable-rate linear network error correction codes when the source transmits the messages at several different rates.展开更多
This paper focused on the design and optimization of automatic sprinkler fire extinguishing systems in building fire protection.It was emphasized the importance of considering various factors in design,such as fire ri...This paper focused on the design and optimization of automatic sprinkler fire extinguishing systems in building fire protection.It was emphasized the importance of considering various factors in design,such as fire risk assessment and space utilization.Optimization strategies include enhancing water and energy efficiency,using ecofriendly materials,and smart monitoring.Practical implementation and validation in different building types were presented,along with performance benchmark analysis.Balancing fire safety and resource utilization is crucial,and future research in AI driven tuning and nano materials was promising.展开更多
Automated over-tree sprinkler irrigation systems were developed and tested in two orchards located in two separate locations in southern Iran (a 0.17 ha peach orchard and a 0.24 ha orange orchard) to protect peach b...Automated over-tree sprinkler irrigation systems were developed and tested in two orchards located in two separate locations in southern Iran (a 0.17 ha peach orchard and a 0.24 ha orange orchard) to protect peach blossoms and orange trees leaves and fruits from low temperature damage. The experiment used a system that monitored the trees and air temperatures using two thermistors. The water application rate by the irrigation system was determined by an energy balance as implemented by the software FROSTPRO, In the peach orchard, the system was tested during three frost events during the spring of 2003 and three other events during the spring of 2004. The system successfully kept peach flowers above the critical temperature, i.e., -4.0℃ in spring 2004 (control block -4.12℃, and sprinkled block +0.5℃) during all events. Similar results were obtained in the orange orchard during three frost events in the winter of 2004, during which the tree temperatures were at least 2.5℃ above the critical temperature. Results from field tests show that the system can effectively protect the peach blossoms from damage. Determination done after the frost events showed a 12% blossom kill in the sprinkled blocks while in the unsprinkled control block a 41.5% blossom kill. Calculations indicated that when using variable application rates, the amount of water used can be reduced by 54.3%. Spatial distribution of minimum temperatures during the three frosts was also studied in Jahrom, Iran. Results showed a significant temperature control in the experimental block, especially in the central part of the orchard, but the block margins (about 3.6% of the total area) were at the risk of low temperature due to the wind drift effects.展开更多
Sprinkler irrigation is one of the typical irrigation technologies used for the winter wheat-summer maize double cropping system in the North China Plain. To evaluate the evapotranspiration (ET) of winter wheat unde...Sprinkler irrigation is one of the typical irrigation technologies used for the winter wheat-summer maize double cropping system in the North China Plain. To evaluate the evapotranspiration (ET) of winter wheat under sprinkler irrigation in Beijing area, field experiments were conducted in growing seasons through 2005-2008, in the experimental station located in Tongzhou County, Beijing, China, with different irrigation depths. Results indicated that a relatively large variation of soil water content occurred within 0-40 cm soil layer. The seasonal ET of winter wheat generally increased with increasing irrigation amount, while the seasonal usage of soil water had a negative relationship with irrigation amount. Soil evaporation (Es) was about 25% of winter wheat ET during the period from reviving to maturity. Es increased while Es/ET decreased with increasing irrigation amount. Sprinkler irrigation scheduling with relatively large irrigation quota and low irrigation frequency can reduce Es and promote the irrigation water use efficiency.展开更多
Fugitive dust is one of the well known problems in agriculture and it affects both humans and machine producing quality. Dust problems can seriously cause harmful diseases to workers and ruin expensive equipments. In ...Fugitive dust is one of the well known problems in agriculture and it affects both humans and machine producing quality. Dust problems can seriously cause harmful diseases to workers and ruin expensive equipments. In this study, a dust formation generated in open environment by vehicles was analyzed on unpaved roads. Formed dust was measured by calculating total forces on the PM10 (airborne particles smaller than 10 mm) of dust particles, such as air velocity, gravity forces and air turbulence generated by the moving vehicle. The water fogger nozzle discharge was measured to determine the approximate droplets quantity in the air. The foggers were used to suppress the generated dust in an open environment via installing a proposed automatic suppression system which opens automatically when vehicles pass under the system. The relationship between water droplet speed and ability of collecting fugitive dust showed that high air temperature above 40oC and wind speed above 10 m s-1 have negative effects on the system’s ability of collecting dust due to evaporation of small radius droplets and/or drifting water droplets away from the effective area. The overall system efficiency was found to be 85% and the proposed dust suppression system was found to be a satisfying solution for reducing fugitive dust hazards.展开更多
Irrigation uniformity and wind drift and evaporation losses (WDEL) are major concerns for the design and management of sprinkler irrigation systems under arid or semi-arid conditions. Field trials were carried out to ...Irrigation uniformity and wind drift and evaporation losses (WDEL) are major concerns for the design and management of sprinkler irrigation systems under arid or semi-arid conditions. Field trials were carried out to assess irrigation uniformity and WDEL under various wind velocities, sprinkler spacings and operating pressure heads. Based on experimental data, a frequency analysis was performed to infer the occurrence probability of a given uniformity coefficient (UC). In addition, statistical regressions were used to model WDEL as a function of different climatic variables. Increasing the operating pressure head improved uniformity at low wind speeds. It was shown that UC has been severely impaired at wind speeds above 4 m/s. In the prevailing wind conditions, the frequency analysis showed that a sprinkler spacing of 12 m × 12 m provided the best uniformity. In the local conditions, it is recommended to stop irrigation when wind velocity exceeds 4 m/s. Moreover, it was shown that wind speed and relative humidity were the main significant variables influencing WDEL.展开更多
Field experiments were conducted to investigate the effects of nonuniformity of sprinkler fertigation and the amount of fertilizers applied through fertigation on nitrogen uptake and crop yield during two growing seas...Field experiments were conducted to investigate the effects of nonuniformity of sprinkler fertigation and the amount of fertilizers applied through fertigation on nitrogen uptake and crop yield during two growing seasons of winter wheat in 2002-2003 and 2003-2004 at an experimental station in Beijing. In the experiments, the seasonal averaged Christiansen irrigation uniformity coefficient (CU) varied from 72% to 84%. Except for the fertilizer applied before planting, fertilizer was applied with the sprinkler irrigation system with a seasonal averaged CU for fertigation varied from 71% to 85%. Three levels of fertilizer applied varying from 0 to 180 kg N ha^-1 were used in the experiments. The experimental results demonstrated that sprinkler fertigation uniformity had insignificant effects on nitrogen uptake and crop yield for the uniformity range tested. Also, the influence of fertilizer applied through sprinkler fertigation on crop yield was minor, while the total nitrogen content for stem and nitrogen uptake increased with increasing fertilizer applied.展开更多
To study the application of self-pressure sprinkler irrigation technology to vegetation restoration of grassland in alpine arid areas,three treatments including fenced grassland(FG),fencedirrigated grassland(FA),and f...To study the application of self-pressure sprinkler irrigation technology to vegetation restoration of grassland in alpine arid areas,three treatments including fenced grassland(FG),fencedirrigated grassland(FA),and free grazing grassland(CK) were compared in respect of primary productivity.The results showed that the community coverage of FA was only 35.96% higher than that of FG and 152.69% higher than that of CK;the plant height of FA was only 76.71% higher than that of FG and 155.77% higher than that of CK;the productivity of the community in FA was only 24.10% higher than that of FG and 110.00% higher than that of CK.It indicates that the self-pressure sprinkler irrigation technology has certain demonstration and promotion potential in vegetation restoration of grassland in alpine regions and can provide a new way for the sustainable development of grassland animal husbandry in Tibet.展开更多
The field experiments were conducted at the experimental farm of Faculty of agricultural, southern Illinois University SIUC, USA. The project makes the irrigation automated. With the use of low cost sensors and the si...The field experiments were conducted at the experimental farm of Faculty of agricultural, southern Illinois University SIUC, USA. The project makes the irrigation automated. With the use of low cost sensors and the simple circuitry makes currently project a low cost product, which can be bought even by a poor farmer. This research work is best suited for places where water is scares and has to be used in limited quantity and this proposal is a model to modernize the agriculture industries at a mass scale with optimum expenditure. In the field of agricultural engineering, use of sensor method of irrigation operation is important and it is well known that closed circuits of Mini-sprinkler irrigation system are very economical and efficient. Closed circuits are considered one of the modifications of Mini-sprinkler irrigation system, and added advantages to Mini-sprinkler irrigation system because it can relieve low operating pressures problem at the end of the lateral lines. In the conventional closed circuits of Mini-sprinkler irrigation system, the farmer has to keep watch on irrigation timetable, which is different for different crops. Using this system, one can save manpower, water to improve production and ultimately profit. The data could be summarized in following: Irrigation methods under study when using lateral length 60 mcould be ranked in the following ascending order according the values of the predicted and measured head losses CM1M-SIS CM2M-SIS.The correlation (Corr.) coefficients were used to compare the predicted and measured head losses along the lateral lines of all the closed circuits designs. Generally, the values of correlation analysis were (>0.90) were obtained with 0% field slope60 mlength (experimental conditions) for all closed circuits.The interaction between irrigation methods: at the start there are significant differences between CM2M-SIS and CM1M-SIS.展开更多
Stemflow is vital for supplying water,fertilizer,and other crop essentials during sprinkler irrigation.Exploring the spatial and temporal variations of crop stemflow and its influencing factors will be essential to pr...Stemflow is vital for supplying water,fertilizer,and other crop essentials during sprinkler irrigation.Exploring the spatial and temporal variations of crop stemflow and its influencing factors will be essential to preventing soil water and nutrient ion's migration to deeper layers,developing,and optimizing effective sprinkler irrigation schedules.Based on the two-year experimental data,we analyzed the variation patterns(stemflow amount,depth,rate,and funneling ratio)of maize stemflow during the growing season,and clarified its vertical distribution pattern.Meanwhile,effects of sprinkler irrigation and maize morphological parameters on stemflow were investigated.The results showed that stemflow increased gradually as maize plant grew.Specifically,stemflow was small at the pre-jointing stage and reached the maximum at the late filling stage.The upper canopy generated more stemflow than the lower canopy until the flare opening stage.After the tasseling stage,the middle canopy generated more stemflow than the other positions.Variation in canopy closure at different positions was the main factor contributing to the above difference.As sprinkler intensity increased,stemflow also increased.However,the effect of droplet size on stemflow was inconsistent.Specifically,when sprinkler intensity was less than or equal to 10 mm/h,stemflow was generated with increasing droplet size.In contrast,if sprinkler intensity was greater than or equal to 20 mm/h,stemflow tended to decreased with increasing droplet size.Compared with other morphological parameters,canopy closure significantly affected the generation of stemflow.Funneling ratio was not significantly affected by plant morphology.Based on the results of different sprinkler intensities,we developed stemflow depth versus canopy closure and stemflow rate versus canopy closure power function regression models with a high predictive accuracy.The research findings will contribute to the understanding of the processes of stemflow involving the hydro-geochemical cycle of agro-ecosystems and the implementation of cropland management practices.展开更多
This study examined changes in some soil hydrophysical, chemical properties and wheat yield (grain;straw yield, N, P, K, Protein and carbohydrates contents) as trends under two cultivated period 10 and 25 year and Far...This study examined changes in some soil hydrophysical, chemical properties and wheat yield (grain;straw yield, N, P, K, Protein and carbohydrates contents) as trends under two cultivated period 10 and 25 year and Farm Yard manure (FYM) addition under sprinkler irrigation system on a newly reclaimed soils, Nubaria, Beheira Governorate, Egypt. Obtained results noticed that cultivation period has more pronounced effect than FYM addition on soil water content at field capacity, wilting point and available water with increase percent 15.1%, 9.3%;19.0% and 25.7%, 19.5% and 30.0% for FYM and cultivation period comparing with control one. Hydraulic conductivity values were strongly affected by cultivation period and FYM addition and significantly decreased values by about 18.9% and 12.1% in same sequences. Wheat straw content from protein had a superior effect under 25 than 10 years cultivated periods with values 61.9 and 6.7 comparing with control, respectively as affected by FYM addition, while FYM alone improved protein content in straw by about 31.9% comparing with untreated one. Slightly increase in straw protein content was attained relative to the increase of cultivated period by about 7.8%. Nutrients content in grain is more than FYM, where the increase percentage were 5.2%, 13.5%;3.8% and 26.5, 21.3;22.6 comparing cultivated periods 25 with 10 years and FYM addition with control, respectively. FYM individually under two studied cultivated periods is more effective under 10 years (28.0%, 25.2%;15.1%) than the 2nd one (25.1%, 25.2%;15.1%) comparing with untreated FYM plots. While N, P and K content in wheat straw had unclear trend and the increase were 6.8, 23.23;56.5% and 62.9, 6.0;29.8 as a result of FYM addition under 10 and 25 years cultivated periods, respectively. The highest values of protein and carbohydrates content in wheat grains as affected by studied factors were 12.86% and 67.43%) were obtained under cultivated period 25 years after FYM addition. Cultivated periods had a highly significant effect on the field water use efficiency values of grain more than the effect of FYM. The highest values of grain and straw yield were recorded at 10 years cultivated periods + treated FYM (2966.8 kg/fed) and 25 years cultivated periods treated with FYM (3835.6 kg/fed). Cultivated periods increased grain and straw yield of wheat crop by about 57.6% and 8.3%. Whereas, FYM increased grain and straw yield by about 39.8% and 58.8% relative to the control, respectively.展开更多
As a new efficient water-saving irrigation equipment, the buried automatic telescopic sprinkler system has reached the international advanced level and has significant advantages. Based on the buried automatic telesco...As a new efficient water-saving irrigation equipment, the buried automatic telescopic sprinkler system has reached the international advanced level and has significant advantages. Based on the buried automatic telescopic sprinkler system constructed the alfalfa planting demonstration area in Ningxia water-saving and effi- cient agriculture science and technology park, the construction technology and the matters needing attention were summarized and concluded from the following as- pects: excavation site survey, construction scheme design, site lofting and earth ex- cavation, pipeline installation and pressure testing, nozzle installation and pipe canal backfilling, investigation well and drain well construction, head filter system installa- tion, water power system construction, which provided guidance for construction and renovation of the sprinkler system and efficient water-saving irrigation projects.展开更多
Overhead aluminum sprinklers, which are used during the early stages of strawberry crop development to establish transplants and to leach out salts from the root zone, deliver significant volumes of water. Micro-sprin...Overhead aluminum sprinklers, which are used during the early stages of strawberry crop development to establish transplants and to leach out salts from the root zone, deliver significant volumes of water. Micro-sprinklers, which are typically used in orchard crops, were evaluated in a commercial strawberry field in California as an alternative to conventional aluminum sprinklers to conserve water without any negative impact on yields. In addition to the water consumption, data were collected from multiple plots within each treatment to determine the impact on plant growth, disease incidence, and seasonal yield. Micro-sprinklers used 32% less water than aluminum sprinklers during a three-week period without affecting fruit yield. They also appeared to lessen the severity of powdery mildew and botrytis fruit rot. This is the first study reporting the use of micro-sprinkler system, which can be a good alternative to the aluminum sprinklers to conserve irrigation water.展开更多
文摘Sampling studies in North Dakota conducted from 1994 to 2003 showed that variable-rate N application could be practically directed with zone soil sampling. Results from variable-rate N studies using zone soil sampling were often less than rewarding due in part to the use of a whole-field predicted yield-based formula for developing the N recommendation in each zone. Nitrogen rate studies on spring wheat and durum were established in 2005 through 2009 with the objective to reexamine N recommendations and construct a new system if necessary. The results of the study and archived wheat N response data showed that the state should be divided into three separate N response regions. Within each region historic yields from low to high productivity were defined. The gross N rate was determined using the return-to-N concept developed in the US corn-belt states but with additional consideration for wheat protein value The gross N rate is then modified by credits for previous crop, soil test N from zone soil sampling, tillage systems, excessive straw from the previous year, relative susceptibility to nitrate leaching or denitrification. Finally, the user is encouraged to use common sense and consider whether particular fields have characteristics that require more or less N fertilizer than suggested by the recommendation formulas.
基金Project(60872005) supported by National Natural Science Foundation of China
文摘To adjust the variance of source rate in linear broadcast networks, global encoding kernels should have corresponding dimensions to instruct the decoding process. The algorithm of constructing such global encoding kernels is to adjust heterogeneous network to possible link failures. Linear algebra, graph theory and group theory are applied to construct one series of global encoding kernels which are applicable to all source rates. The effectiveness and existence of such global encoding kernels are proved. Based on 2 information flow, the algorithm of construction is explicitly given within polynomial time O(|E| |T|.ω^2max), and the memory complexity of algorithm is O(|E|). Both time and memory complexity of this algorithm proposed can be O(ωmax) less than those of algorithms in related works.
基金Sponsored by the National Natural Science Foundation of China and the Research Grants Council of Hong Kong Joint Research Scheme(Grant No.60731160626)the National Natural Science Foundation of China(Grant No.60821001and61003287)+1 种基金the 111 Project(Grant No.B08004)the Fundamental Research Funds for the Central Universities(Grant No.BUPT2009RC0220)
文摘Fong et al.analyzed variable-rate linear network coding for linear broadcast.However,the authors didn't investigate it for the other three types of linear network codes.In this paper,by simple and clear proofs,it is found that there are similar results for variable-rate linear generic and linear dispersion if the field size is large enough.It means that linear generics and linear dispersions of different dimensions can be implemented on the same network,while each non-source node is required to store only one copy of the local encoding kernel within a session.Moreover,an example is given to show that there isn't a similar result for linear multicast.
基金Supported by the Science and Technology Research Project of the 12th Five-year Plan(2011BAD20B03-01)
文摘In order to increase the applying rate of liquid fertilizer and reduce environmental pollution, a slave computer control system for applying variable-rate liquid fertilizer was designed. The system used SMC as core processor and electrically controlled pressure regulator as execution component. The characteristic equation of the system was obtained by using classical control theory. Results indicated that the characteristic equation met the requirements of routh-criterion, which indicated the working process of the system was stable. Performance of the slave computer was verified via bench tests. Results demonstrated that there was no significant influence on the response from interclass error. The fertilization error was less than 0.9, and the fertilization accuracy was larger than 97%. The liquid fertilizer emitted by the fertilizing devices had no significant difference in uniformity, which met the demands of the slave computer control system for applying variable-rate liquid fertilizer.
文摘By extending the notion of the minimum distance for linear network error correction code(LNEC), this paper introduces the concept of generalized minimum rank distance(GMRD) of variable-rate linear network error correction codes. The basic properties of GMRD are investigated. It is proved that GMRD can characterize the error correction/detection capability of variable-rate linear network error correction codes when the source transmits the messages at several different rates.
文摘This paper focused on the design and optimization of automatic sprinkler fire extinguishing systems in building fire protection.It was emphasized the importance of considering various factors in design,such as fire risk assessment and space utilization.Optimization strategies include enhancing water and energy efficiency,using ecofriendly materials,and smart monitoring.Practical implementation and validation in different building types were presented,along with performance benchmark analysis.Balancing fire safety and resource utilization is crucial,and future research in AI driven tuning and nano materials was promising.
文摘Automated over-tree sprinkler irrigation systems were developed and tested in two orchards located in two separate locations in southern Iran (a 0.17 ha peach orchard and a 0.24 ha orange orchard) to protect peach blossoms and orange trees leaves and fruits from low temperature damage. The experiment used a system that monitored the trees and air temperatures using two thermistors. The water application rate by the irrigation system was determined by an energy balance as implemented by the software FROSTPRO, In the peach orchard, the system was tested during three frost events during the spring of 2003 and three other events during the spring of 2004. The system successfully kept peach flowers above the critical temperature, i.e., -4.0℃ in spring 2004 (control block -4.12℃, and sprinkled block +0.5℃) during all events. Similar results were obtained in the orange orchard during three frost events in the winter of 2004, during which the tree temperatures were at least 2.5℃ above the critical temperature. Results from field tests show that the system can effectively protect the peach blossoms from damage. Determination done after the frost events showed a 12% blossom kill in the sprinkled blocks while in the unsprinkled control block a 41.5% blossom kill. Calculations indicated that when using variable application rates, the amount of water used can be reduced by 54.3%. Spatial distribution of minimum temperatures during the three frosts was also studied in Jahrom, Iran. Results showed a significant temperature control in the experimental block, especially in the central part of the orchard, but the block margins (about 3.6% of the total area) were at the risk of low temperature due to the wind drift effects.
基金supported by the National Basic Research Program of China (2006CB403405)the National Natural Science Foundation of China (50509025)the Changjiang Scholars and Innovative Research Team in University,China (IRT0657)
文摘Sprinkler irrigation is one of the typical irrigation technologies used for the winter wheat-summer maize double cropping system in the North China Plain. To evaluate the evapotranspiration (ET) of winter wheat under sprinkler irrigation in Beijing area, field experiments were conducted in growing seasons through 2005-2008, in the experimental station located in Tongzhou County, Beijing, China, with different irrigation depths. Results indicated that a relatively large variation of soil water content occurred within 0-40 cm soil layer. The seasonal ET of winter wheat generally increased with increasing irrigation amount, while the seasonal usage of soil water had a negative relationship with irrigation amount. Soil evaporation (Es) was about 25% of winter wheat ET during the period from reviving to maturity. Es increased while Es/ET decreased with increasing irrigation amount. Sprinkler irrigation scheduling with relatively large irrigation quota and low irrigation frequency can reduce Es and promote the irrigation water use efficiency.
基金funded by the Special Program on the S&T of China for the Pollution Control and Treatment of Water Bodies(2008ZX07421-001)the Foundamental Research Funds for the Central Universities, China
文摘Fugitive dust is one of the well known problems in agriculture and it affects both humans and machine producing quality. Dust problems can seriously cause harmful diseases to workers and ruin expensive equipments. In this study, a dust formation generated in open environment by vehicles was analyzed on unpaved roads. Formed dust was measured by calculating total forces on the PM10 (airborne particles smaller than 10 mm) of dust particles, such as air velocity, gravity forces and air turbulence generated by the moving vehicle. The water fogger nozzle discharge was measured to determine the approximate droplets quantity in the air. The foggers were used to suppress the generated dust in an open environment via installing a proposed automatic suppression system which opens automatically when vehicles pass under the system. The relationship between water droplet speed and ability of collecting fugitive dust showed that high air temperature above 40oC and wind speed above 10 m s-1 have negative effects on the system’s ability of collecting dust due to evaporation of small radius droplets and/or drifting water droplets away from the effective area. The overall system efficiency was found to be 85% and the proposed dust suppression system was found to be a satisfying solution for reducing fugitive dust hazards.
文摘Irrigation uniformity and wind drift and evaporation losses (WDEL) are major concerns for the design and management of sprinkler irrigation systems under arid or semi-arid conditions. Field trials were carried out to assess irrigation uniformity and WDEL under various wind velocities, sprinkler spacings and operating pressure heads. Based on experimental data, a frequency analysis was performed to infer the occurrence probability of a given uniformity coefficient (UC). In addition, statistical regressions were used to model WDEL as a function of different climatic variables. Increasing the operating pressure head improved uniformity at low wind speeds. It was shown that UC has been severely impaired at wind speeds above 4 m/s. In the prevailing wind conditions, the frequency analysis showed that a sprinkler spacing of 12 m × 12 m provided the best uniformity. In the local conditions, it is recommended to stop irrigation when wind velocity exceeds 4 m/s. Moreover, it was shown that wind speed and relative humidity were the main significant variables influencing WDEL.
基金the National Natural Science Foundation of China (50179037).
文摘Field experiments were conducted to investigate the effects of nonuniformity of sprinkler fertigation and the amount of fertilizers applied through fertigation on nitrogen uptake and crop yield during two growing seasons of winter wheat in 2002-2003 and 2003-2004 at an experimental station in Beijing. In the experiments, the seasonal averaged Christiansen irrigation uniformity coefficient (CU) varied from 72% to 84%. Except for the fertilizer applied before planting, fertilizer was applied with the sprinkler irrigation system with a seasonal averaged CU for fertigation varied from 71% to 85%. Three levels of fertilizer applied varying from 0 to 180 kg N ha^-1 were used in the experiments. The experimental results demonstrated that sprinkler fertigation uniformity had insignificant effects on nitrogen uptake and crop yield for the uniformity range tested. Also, the influence of fertilizer applied through sprinkler fertigation on crop yield was minor, while the total nitrogen content for stem and nitrogen uptake increased with increasing fertilizer applied.
基金Supported by the National(Agricultural)Science and Technology Project of Public Welfare Industry(201203006)
文摘To study the application of self-pressure sprinkler irrigation technology to vegetation restoration of grassland in alpine arid areas,three treatments including fenced grassland(FG),fencedirrigated grassland(FA),and free grazing grassland(CK) were compared in respect of primary productivity.The results showed that the community coverage of FA was only 35.96% higher than that of FG and 152.69% higher than that of CK;the plant height of FA was only 76.71% higher than that of FG and 155.77% higher than that of CK;the productivity of the community in FA was only 24.10% higher than that of FG and 110.00% higher than that of CK.It indicates that the self-pressure sprinkler irrigation technology has certain demonstration and promotion potential in vegetation restoration of grassland in alpine regions and can provide a new way for the sustainable development of grassland animal husbandry in Tibet.
文摘The field experiments were conducted at the experimental farm of Faculty of agricultural, southern Illinois University SIUC, USA. The project makes the irrigation automated. With the use of low cost sensors and the simple circuitry makes currently project a low cost product, which can be bought even by a poor farmer. This research work is best suited for places where water is scares and has to be used in limited quantity and this proposal is a model to modernize the agriculture industries at a mass scale with optimum expenditure. In the field of agricultural engineering, use of sensor method of irrigation operation is important and it is well known that closed circuits of Mini-sprinkler irrigation system are very economical and efficient. Closed circuits are considered one of the modifications of Mini-sprinkler irrigation system, and added advantages to Mini-sprinkler irrigation system because it can relieve low operating pressures problem at the end of the lateral lines. In the conventional closed circuits of Mini-sprinkler irrigation system, the farmer has to keep watch on irrigation timetable, which is different for different crops. Using this system, one can save manpower, water to improve production and ultimately profit. The data could be summarized in following: Irrigation methods under study when using lateral length 60 mcould be ranked in the following ascending order according the values of the predicted and measured head losses CM1M-SIS CM2M-SIS.The correlation (Corr.) coefficients were used to compare the predicted and measured head losses along the lateral lines of all the closed circuits designs. Generally, the values of correlation analysis were (>0.90) were obtained with 0% field slope60 mlength (experimental conditions) for all closed circuits.The interaction between irrigation methods: at the start there are significant differences between CM2M-SIS and CM1M-SIS.
基金funded by the National Natural Science Foundation of China (52009111)the National Key Research and Development Program of China (2021YFE010300)the Key Research and Development Program of Shaanxi Province,China (2020ZDLNY01-01)
文摘Stemflow is vital for supplying water,fertilizer,and other crop essentials during sprinkler irrigation.Exploring the spatial and temporal variations of crop stemflow and its influencing factors will be essential to preventing soil water and nutrient ion's migration to deeper layers,developing,and optimizing effective sprinkler irrigation schedules.Based on the two-year experimental data,we analyzed the variation patterns(stemflow amount,depth,rate,and funneling ratio)of maize stemflow during the growing season,and clarified its vertical distribution pattern.Meanwhile,effects of sprinkler irrigation and maize morphological parameters on stemflow were investigated.The results showed that stemflow increased gradually as maize plant grew.Specifically,stemflow was small at the pre-jointing stage and reached the maximum at the late filling stage.The upper canopy generated more stemflow than the lower canopy until the flare opening stage.After the tasseling stage,the middle canopy generated more stemflow than the other positions.Variation in canopy closure at different positions was the main factor contributing to the above difference.As sprinkler intensity increased,stemflow also increased.However,the effect of droplet size on stemflow was inconsistent.Specifically,when sprinkler intensity was less than or equal to 10 mm/h,stemflow was generated with increasing droplet size.In contrast,if sprinkler intensity was greater than or equal to 20 mm/h,stemflow tended to decreased with increasing droplet size.Compared with other morphological parameters,canopy closure significantly affected the generation of stemflow.Funneling ratio was not significantly affected by plant morphology.Based on the results of different sprinkler intensities,we developed stemflow depth versus canopy closure and stemflow rate versus canopy closure power function regression models with a high predictive accuracy.The research findings will contribute to the understanding of the processes of stemflow involving the hydro-geochemical cycle of agro-ecosystems and the implementation of cropland management practices.
文摘This study examined changes in some soil hydrophysical, chemical properties and wheat yield (grain;straw yield, N, P, K, Protein and carbohydrates contents) as trends under two cultivated period 10 and 25 year and Farm Yard manure (FYM) addition under sprinkler irrigation system on a newly reclaimed soils, Nubaria, Beheira Governorate, Egypt. Obtained results noticed that cultivation period has more pronounced effect than FYM addition on soil water content at field capacity, wilting point and available water with increase percent 15.1%, 9.3%;19.0% and 25.7%, 19.5% and 30.0% for FYM and cultivation period comparing with control one. Hydraulic conductivity values were strongly affected by cultivation period and FYM addition and significantly decreased values by about 18.9% and 12.1% in same sequences. Wheat straw content from protein had a superior effect under 25 than 10 years cultivated periods with values 61.9 and 6.7 comparing with control, respectively as affected by FYM addition, while FYM alone improved protein content in straw by about 31.9% comparing with untreated one. Slightly increase in straw protein content was attained relative to the increase of cultivated period by about 7.8%. Nutrients content in grain is more than FYM, where the increase percentage were 5.2%, 13.5%;3.8% and 26.5, 21.3;22.6 comparing cultivated periods 25 with 10 years and FYM addition with control, respectively. FYM individually under two studied cultivated periods is more effective under 10 years (28.0%, 25.2%;15.1%) than the 2nd one (25.1%, 25.2%;15.1%) comparing with untreated FYM plots. While N, P and K content in wheat straw had unclear trend and the increase were 6.8, 23.23;56.5% and 62.9, 6.0;29.8 as a result of FYM addition under 10 and 25 years cultivated periods, respectively. The highest values of protein and carbohydrates content in wheat grains as affected by studied factors were 12.86% and 67.43%) were obtained under cultivated period 25 years after FYM addition. Cultivated periods had a highly significant effect on the field water use efficiency values of grain more than the effect of FYM. The highest values of grain and straw yield were recorded at 10 years cultivated periods + treated FYM (2966.8 kg/fed) and 25 years cultivated periods treated with FYM (3835.6 kg/fed). Cultivated periods increased grain and straw yield of wheat crop by about 57.6% and 8.3%. Whereas, FYM increased grain and straw yield by about 39.8% and 58.8% relative to the control, respectively.
基金Supported by the National Key Research and Development Program of China(2016YFC0400206)the Special Fund Project of Ningxia Science and Technology Support Park(Introduction and Demonstration of Buried Irrigation System)~~
文摘As a new efficient water-saving irrigation equipment, the buried automatic telescopic sprinkler system has reached the international advanced level and has significant advantages. Based on the buried automatic telescopic sprinkler system constructed the alfalfa planting demonstration area in Ningxia water-saving and effi- cient agriculture science and technology park, the construction technology and the matters needing attention were summarized and concluded from the following as- pects: excavation site survey, construction scheme design, site lofting and earth ex- cavation, pipeline installation and pressure testing, nozzle installation and pipe canal backfilling, investigation well and drain well construction, head filter system installa- tion, water power system construction, which provided guidance for construction and renovation of the sprinkler system and efficient water-saving irrigation projects.
文摘Overhead aluminum sprinklers, which are used during the early stages of strawberry crop development to establish transplants and to leach out salts from the root zone, deliver significant volumes of water. Micro-sprinklers, which are typically used in orchard crops, were evaluated in a commercial strawberry field in California as an alternative to conventional aluminum sprinklers to conserve water without any negative impact on yields. In addition to the water consumption, data were collected from multiple plots within each treatment to determine the impact on plant growth, disease incidence, and seasonal yield. Micro-sprinklers used 32% less water than aluminum sprinklers during a three-week period without affecting fruit yield. They also appeared to lessen the severity of powdery mildew and botrytis fruit rot. This is the first study reporting the use of micro-sprinkler system, which can be a good alternative to the aluminum sprinklers to conserve irrigation water.