This paper introduces the design of doubly fed system for conveyor belt motor, the system adopts stator flux orientation vector control technology and AC-AC inverter motor speed and power factor control, and carried o...This paper introduces the design of doubly fed system for conveyor belt motor, the system adopts stator flux orientation vector control technology and AC-AC inverter motor speed and power factor control, and carried on the test in transmission field. This paper introduces in detail the structure and characteristic of DSP system, and gives a design scheme of Doubly Fed Speed Control System of motor based on this chip.展开更多
Dual three-phase Permanent Magnet Synchronous Motor(DTP-PMSM)is a nonlinear,strongly coupled,high-order multivariable system.In today’s application scenarios,it is difficult for traditional PI controllers to meet the...Dual three-phase Permanent Magnet Synchronous Motor(DTP-PMSM)is a nonlinear,strongly coupled,high-order multivariable system.In today’s application scenarios,it is difficult for traditional PI controllers to meet the requirements of fast response,high accuracy and good robustness.In order to improve the performance of DTP-PMSM speed regulation system,a control strategy of PI controller based on genetic algorithm is proposed.Firstly,the basic mathematical model of DTP-PMSM is established,and the PI parameters of DTP-PMSM speed regulation system are optimized by genetic algorithm,and the modeling and simulation experiments of DTP-PMSM control system are carried out by MATLAB/SIMULINK.The simulation results show that,compared with the traditional PI control,the proposed algorithm significantly improves the performance of the control system,and the speed output overshoot of the GA-PI speed control system is smaller.The anti-interference ability is stronger,and the torque and double three-phase current output fluctuations are smaller.展开更多
In the energy regulation based varibable-speed electrohydraulic drive system, the supply energy and the demanded energy, which will affect the control performance greatly, are crucial. However, they are hard to be obt...In the energy regulation based varibable-speed electrohydraulic drive system, the supply energy and the demanded energy, which will affect the control performance greatly, are crucial. However, they are hard to be obtained via conventional methods for some reasons. This paper tries to a new route: the definitive numerical values of the supply energy and the demanded energy are not required, except for their relationship which is called energy state. A three-layer back propagation(BP) neural network was built up to act as an energy analysis unit to deduce the energy state. The neural network has three inputs: the reference displacement, the actual displacement of cylinder rod and the system flowrate supply. The output of the neural network is energy state. A Chebyshev type II filter was designed to calculate the cylinder speed for the estimation of system flowrate supply. The training and testing samples of neural network were collected by the system accurate simulation model. After off-line training, the neural network was tested by the testing data. And the testing result demonstrates that the designed neural network was successful. Then, the neural network acts as the energy analysis unit in real-time experiments of cylinder position control, where it works efficiently under square-wave and sine-wave reference displacement. The experimental results validate its feasibility and adaptability. Only a position sensor and some pressure sensors, which are cheap and have quick dynamic response, are necessary for the system control. And the neural network plays the role of identifying the energy state.展开更多
This paper suggests a novel model-based nonlinear DC motor speed regulator without the use of a current sensor.The current dynamics,machine parameters and mismatched load variations are considered.The proposed control...This paper suggests a novel model-based nonlinear DC motor speed regulator without the use of a current sensor.The current dynamics,machine parameters and mismatched load variations are considered.The proposed controller is designed to include an active damping term that regulates the motor speed in accordance with the first-order low-pass filter dynamics through the pole-zero cancellation.Meanwhile,the angular acceleration and its reference are obtained from simple first-order estimators using only the speed information.The effectiveness is experimentally verified using hardware comprising the QUBEServo2,myRIO-1900,and LabVIEW.展开更多
A power saving frequency difference controlling method was introduced by the double inverter and motor experiment system.The characters of the system under differ- ent loads were investigated.The theoretical analysis ...A power saving frequency difference controlling method was introduced by the double inverter and motor experiment system.The characters of the system under differ- ent loads were investigated.The theoretical analysis and experiment results show the frequency difference method is a ideal power saving speed regulation method for the dou- ble inverter and motor system.The experiment system is simply structured,convenient to operate and provides a new way of character testing for frequency conversion speed regulation.展开更多
The speed regulation problem with only speed measurement is investigated in this paper for a permanent magnet direct current(DC)motor driven by a buck converter.By lumping all unknown matched/unmatched disturbances an...The speed regulation problem with only speed measurement is investigated in this paper for a permanent magnet direct current(DC)motor driven by a buck converter.By lumping all unknown matched/unmatched disturbances and uncertainties together,the traditional active disturbance rejection control(ADRC)approach provides an intuitive solution for the problem under consideration.However,for such a higher-order disturbed system,the increase of poles for the extended state observer(ESO)therein will lead to drastically growth of observer gains,which causes severe noise amplification.This paper aims to propose a new model-based disturbance rejection controller for the converter-driven DC motor system using output-feedback.Instead of estimating lumped disturbances directly,a new observer is constructed to estimate the desired steady state of control signal as well as errors between the real states and their desired steady-state responses.Thereafter,a controller with only speed measurement is proposed by utilizing the estimates.The performance of the proposed method is tested through experiments on dSPACE.It is further shown via numerical calculations and experimental results that the poles of the observer within the proposed control approach can be largely increased without significantly increasing magnitude of the observer gains.展开更多
Main Exhauster is one of the main equipment of sintering production. It needs to consume a lot of electricity. Therefore, the system' s reconstruction for energy-saving will effectively reduce electricity for the pro...Main Exhauster is one of the main equipment of sintering production. It needs to consume a lot of electricity. Therefore, the system' s reconstruction for energy-saving will effectively reduce electricity for the production. The paper takes an iron and steel enterprise that had successfully transformed the synchronous motors of main exhauster of sintering as an example, which describes the application of high-voltage variable frequency speed regulation system in main exhauster of Sintering, so as to provide a reference for other iron and steel enterprises.展开更多
The precise movement speed regulation is a key factor to improve the control effect and efficiency of the cyborg rats.However,the current stimulation techniques cannot realize the graded control of the speed.In this s...The precise movement speed regulation is a key factor to improve the control effect and efficiency of the cyborg rats.However,the current stimulation techniques cannot realize the graded control of the speed.In this study,we achieved the multi-level speed regulation of cyborg rats in the large open field and treadmill by specifically targeting the Cuneiform Nucleus(CnF)of the Mesencephalic Locomotor Region(MLR).Detailed,we measured the influence of each stimulation parameter on the speed control process which included the real-time speed,accelerated speed,response time,and acceleration period.We concluded that the pulse period and the pulse width were the main determinants influencing the accelerated speed of cyborg rats.Whereas the amplitude of stimulation was found to affect the response time exhibited by the cyborg rats.Our study provides valuable insights into the regulation of rat locomotion speed and highlights the potential for utilizing this approach in various experimental settings.展开更多
文摘This paper introduces the design of doubly fed system for conveyor belt motor, the system adopts stator flux orientation vector control technology and AC-AC inverter motor speed and power factor control, and carried on the test in transmission field. This paper introduces in detail the structure and characteristic of DSP system, and gives a design scheme of Doubly Fed Speed Control System of motor based on this chip.
基金supported in part by the Liaoning Provincial Department of Education Key Research Project under JYT2020160by the Liaoning Provincial Department of Education General Project under LJKZ0224。
文摘Dual three-phase Permanent Magnet Synchronous Motor(DTP-PMSM)is a nonlinear,strongly coupled,high-order multivariable system.In today’s application scenarios,it is difficult for traditional PI controllers to meet the requirements of fast response,high accuracy and good robustness.In order to improve the performance of DTP-PMSM speed regulation system,a control strategy of PI controller based on genetic algorithm is proposed.Firstly,the basic mathematical model of DTP-PMSM is established,and the PI parameters of DTP-PMSM speed regulation system are optimized by genetic algorithm,and the modeling and simulation experiments of DTP-PMSM control system are carried out by MATLAB/SIMULINK.The simulation results show that,compared with the traditional PI control,the proposed algorithm significantly improves the performance of the control system,and the speed output overshoot of the GA-PI speed control system is smaller.The anti-interference ability is stronger,and the torque and double three-phase current output fluctuations are smaller.
基金supported by National Natural Science Foundation of China (Grant No. 50505042)
文摘In the energy regulation based varibable-speed electrohydraulic drive system, the supply energy and the demanded energy, which will affect the control performance greatly, are crucial. However, they are hard to be obtained via conventional methods for some reasons. This paper tries to a new route: the definitive numerical values of the supply energy and the demanded energy are not required, except for their relationship which is called energy state. A three-layer back propagation(BP) neural network was built up to act as an energy analysis unit to deduce the energy state. The neural network has three inputs: the reference displacement, the actual displacement of cylinder rod and the system flowrate supply. The output of the neural network is energy state. A Chebyshev type II filter was designed to calculate the cylinder speed for the estimation of system flowrate supply. The training and testing samples of neural network were collected by the system accurate simulation model. After off-line training, the neural network was tested by the testing data. And the testing result demonstrates that the designed neural network was successful. Then, the neural network acts as the energy analysis unit in real-time experiments of cylinder position control, where it works efficiently under square-wave and sine-wave reference displacement. The experimental results validate its feasibility and adaptability. Only a position sensor and some pressure sensors, which are cheap and have quick dynamic response, are necessary for the system control. And the neural network plays the role of identifying the energy state.
基金supported in part by the National Research Foundation of Korea(NRF)grant funded by the Korea government(MSIT)(2020M3H4A3106326)supported in part by the NRF grant funded by the Korea government(Ministry of Science and ICT)(NRF-2020R1A2C1005449)。
文摘This paper suggests a novel model-based nonlinear DC motor speed regulator without the use of a current sensor.The current dynamics,machine parameters and mismatched load variations are considered.The proposed controller is designed to include an active damping term that regulates the motor speed in accordance with the first-order low-pass filter dynamics through the pole-zero cancellation.Meanwhile,the angular acceleration and its reference are obtained from simple first-order estimators using only the speed information.The effectiveness is experimentally verified using hardware comprising the QUBEServo2,myRIO-1900,and LabVIEW.
文摘A power saving frequency difference controlling method was introduced by the double inverter and motor experiment system.The characters of the system under differ- ent loads were investigated.The theoretical analysis and experiment results show the frequency difference method is a ideal power saving speed regulation method for the dou- ble inverter and motor system.The experiment system is simply structured,convenient to operate and provides a new way of character testing for frequency conversion speed regulation.
基金supported in part by the Natural Science Foundation of China(61973080,61973081)by the Aviation Key Laboratory of Science and Technology on Aero Electromechanical System Integration(201928069002)the Key R&D Plan of Jiangsu Province(BE2020082-4)。
文摘The speed regulation problem with only speed measurement is investigated in this paper for a permanent magnet direct current(DC)motor driven by a buck converter.By lumping all unknown matched/unmatched disturbances and uncertainties together,the traditional active disturbance rejection control(ADRC)approach provides an intuitive solution for the problem under consideration.However,for such a higher-order disturbed system,the increase of poles for the extended state observer(ESO)therein will lead to drastically growth of observer gains,which causes severe noise amplification.This paper aims to propose a new model-based disturbance rejection controller for the converter-driven DC motor system using output-feedback.Instead of estimating lumped disturbances directly,a new observer is constructed to estimate the desired steady state of control signal as well as errors between the real states and their desired steady-state responses.Thereafter,a controller with only speed measurement is proposed by utilizing the estimates.The performance of the proposed method is tested through experiments on dSPACE.It is further shown via numerical calculations and experimental results that the poles of the observer within the proposed control approach can be largely increased without significantly increasing magnitude of the observer gains.
文摘Main Exhauster is one of the main equipment of sintering production. It needs to consume a lot of electricity. Therefore, the system' s reconstruction for energy-saving will effectively reduce electricity for the production. The paper takes an iron and steel enterprise that had successfully transformed the synchronous motors of main exhauster of sintering as an example, which describes the application of high-voltage variable frequency speed regulation system in main exhauster of Sintering, so as to provide a reference for other iron and steel enterprises.
基金the National Key R&D Program of China(2020YFB1313501)Zhejiang Provincial Natural Science Foundation(LZ24F020003)+2 种基金National Natural Science Foundation of China(T2293723)the Key R&D program of Zhejiang Province(2021C03003)the Fundamental Research Funds for the Central Universities(No.226-2022-00051).
文摘The precise movement speed regulation is a key factor to improve the control effect and efficiency of the cyborg rats.However,the current stimulation techniques cannot realize the graded control of the speed.In this study,we achieved the multi-level speed regulation of cyborg rats in the large open field and treadmill by specifically targeting the Cuneiform Nucleus(CnF)of the Mesencephalic Locomotor Region(MLR).Detailed,we measured the influence of each stimulation parameter on the speed control process which included the real-time speed,accelerated speed,response time,and acceleration period.We concluded that the pulse period and the pulse width were the main determinants influencing the accelerated speed of cyborg rats.Whereas the amplitude of stimulation was found to affect the response time exhibited by the cyborg rats.Our study provides valuable insights into the regulation of rat locomotion speed and highlights the potential for utilizing this approach in various experimental settings.