期刊文献+
共找到38,358篇文章
< 1 2 250 >
每页显示 20 50 100
Numerical Treatments for Crossover Cancer Model of Hybrid Variable-Order Fractional Derivatives
1
作者 Nasser Sweilam Seham Al-Mekhlafi +2 位作者 Aya Ahmed Ahoud Alsheri Emad Abo-Eldahab 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第8期1619-1645,共27页
In this paper,two crossover hybrid variable-order derivatives of the cancer model are developed.Grünwald-Letnikov approximation is used to approximate the hybrid fractional and variable-order fractional operators... In this paper,two crossover hybrid variable-order derivatives of the cancer model are developed.Grünwald-Letnikov approximation is used to approximate the hybrid fractional and variable-order fractional operators.The existence,uniqueness,and stability of the proposed model are discussed.Adams Bashfourth’s fifth-step method with a hybrid variable-order fractional operator is developed to study the proposed models.Comparative studies with generalized fifth-order Runge-Kutta method are given.Numerical examples and comparative studies to verify the applicability of the used methods and to demonstrate the simplicity of these approximations are presented.We have showcased the efficiency of the proposed method and garnered robust empirical support for our theoretical findings. 展开更多
关键词 Cancer diseases hybrid variable-order fractional derivatives adams bashfourth fifth step generalized fifth order Runge-Kutta method
在线阅读 下载PDF
Multiple Solutions for a Class of Variable-Order Fractional Laplacian Equations with Concave-Convex Nonlinearity
2
作者 Canlin Gan Ting Xiao Qiongfen Zhang 《Journal of Applied Mathematics and Physics》 2022年第3期837-849,共13页
This paper is concerned with the following variable-order fractional Laplacian equations , where N ≥ 1 and N > 2s(x,y) for (x,y) ∈ Ω × Ω, Ω is a bounded domain in R<sup>N</sup>, s(&#8901;)... This paper is concerned with the following variable-order fractional Laplacian equations , where N ≥ 1 and N > 2s(x,y) for (x,y) ∈ Ω × Ω, Ω is a bounded domain in R<sup>N</sup>, s(&#8901;) ∈ C (R<sup>N</sup> × R<sup>N</sup>, (0,1)), (-Δ)<sup>s(&#8901;)</sup> is the variable-order fractional Laplacian operator, λ, μ > 0 are two parameters, V: Ω → [0, ∞) is a continuous function, f ∈ C(Ω × R) and q ∈ C(Ω). Under some suitable conditions on f, we obtain two solutions for this problem by employing the mountain pass theorem and Ekeland’s variational principle. Our result generalizes the related ones in the literature. 展开更多
关键词 Concave-Convex Nonlinearity variable-order fractional Laplacian Variational Methods fractional Elliptic Equation
在线阅读 下载PDF
A novel variable-order fractional chaotic map and its dynamics
3
作者 唐周青 贺少波 +3 位作者 王会海 孙克辉 姚昭 吴先明 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第3期281-290,共10页
In recent years,fractional-order chaotic maps have been paid more attention in publications because of the memory effect.This paper presents a novel variable-order fractional sine map(VFSM)based on the discrete fracti... In recent years,fractional-order chaotic maps have been paid more attention in publications because of the memory effect.This paper presents a novel variable-order fractional sine map(VFSM)based on the discrete fractional calculus.Specially,the order is defined as an iterative function that incorporates the current state of the system.By analyzing phase diagrams,time sequences,bifurcations,Lyapunov exponents and fuzzy entropy complexity,the dynamics of the proposed map are investigated comparing with the constant-order fractional sine map.The results reveal that the variable order has a good effect on improving the chaotic performance,and it enlarges the range of available parameter values as well as reduces non-chaotic windows.Multiple coexisting attractors also enrich the dynamics of VFSM and prove its sensitivity to initial values.Moreover,the sequence generated by the proposed map passes the statistical test for pseudorandom number and shows strong robustness to parameter estimation,which proves the potential applications in the field of information security. 展开更多
关键词 CHAOS fractional difference variable order MULTISTABILITY COMPLEXITY
原文传递
A_(α)-Spectral Conditions for(a,b,k)-Factor-Critical Graphs and Fractional ID-[a,b]-Factor-Critical Covered Graphs
4
作者 Yonglei CHEN Fei WEN 《Journal of Mathematical Research with Applications》 2026年第1期1-12,共12页
In this paper,we first give a sufficient condition for a graph being fractional ID-[a,b]-factor-critical covered in terms of its independence number and minimum degree,which partially answers the problem posed by Sizh... In this paper,we first give a sufficient condition for a graph being fractional ID-[a,b]-factor-critical covered in terms of its independence number and minimum degree,which partially answers the problem posed by Sizhong Zhou,Hongxia Liu and Yang Xu(2022).Then,an A_(α)-spectral condition is given to ensure that G is a fractional ID-[a,b]-factor-critical covered graph and an(a,b,k)-factor-critical graph,respectively.In fact,(a,b,k)-factor-critical graph is a graph which has an[a,b]-factor for k=0.Thus,these above results extend the results of Jia Wei and Shenggui Zhang(2023)and Ao Fan,Ruifang Liu and Guoyan Ao(2023)in some sense. 展开更多
关键词 A_(α)-spectral radius (a b k)-factor fractional(g f)-factor ID-factor-critical graph independence number
原文传递
The Convergence of Euler-Maruyama Method of Nonlinear Variable-Order Fractional Stochastic Differential Equations
5
作者 Shanshan Xu Lin Wang Wenqiang Wang 《Advances in Applied Mathematics and Mechanics》 SCIE 2023年第4期852-879,共28页
In this paper,we first prove the existence and uniqueness theorem of the solution of nonlinear variable-order fractional stochastic differential equations(VFSDEs).We futher constructe the Euler-Maruyama method to solv... In this paper,we first prove the existence and uniqueness theorem of the solution of nonlinear variable-order fractional stochastic differential equations(VFSDEs).We futher constructe the Euler-Maruyama method to solve the equations and prove the convergence in mean and the strong convergence of the method.In particular,when the fractional order is no longer varying,the conclusions obtained are consistent with the relevant conclusions in the existing literature.Finally,the numerical experiments at the end of the article verify the correctness of the theoretical results obtained. 展开更多
关键词 variable-order Caputo fractional derivative Stochastic differential equations Euler-Maruyama method CONVERGENCE multiplicative noise
在线阅读 下载PDF
A Hybrid ESA-CCD Method for Variable-Order Time-Fractional Diffusion Equations
6
作者 Xiaoxue Lu Chunhua Zhang +1 位作者 Huiling Xue Bowen Zhong 《Journal of Applied Mathematics and Physics》 2024年第9期3053-3065,共13页
In this paper, we study the solutions for variable-order time-fractional diffusion equations. A three-point combined compact difference (CCD) method is used to discretize the spatial variables to achieve sixth-order a... In this paper, we study the solutions for variable-order time-fractional diffusion equations. A three-point combined compact difference (CCD) method is used to discretize the spatial variables to achieve sixth-order accuracy, while the exponential-sum-approximation (ESA) is used to approximate the variable-order Caputo fractional derivative in the temporal direction, and a novel spatial sixth-order hybrid ESA-CCD method is implemented successfully. Finally, the accuracy of the proposed method is verified by numerical experiments. 展开更多
关键词 variable-order Caputo fractional Derivative Combined Compact Difference Method Exponential-Sum-Approximation
在线阅读 下载PDF
Error Estimate of a Fully Discrete Local Discontinuous Galerkin Method for Variable-Order Time-Fractional Diffusion Equations
7
作者 Leilei Wei Shuying Zhai Xindong Zhang 《Communications on Applied Mathematics and Computation》 2021年第3期429-443,共15页
The aim of this paper is to develop a fully discrete local discontinuous Galerkin method to solve a class of variable-order fractional diffusion problems.The scheme is discretized by a weighted-shifted Grünwald f... The aim of this paper is to develop a fully discrete local discontinuous Galerkin method to solve a class of variable-order fractional diffusion problems.The scheme is discretized by a weighted-shifted Grünwald formula in the temporal discretization and a local discontinuous Galerkin method in the spatial direction.The stability and the L^(2)-convergence of the scheme are proved for all variable-orderα(t)∈(0,1).The proposed method is of accuracy-order O(τ^(3)+h^(k+1)),whereτ,h,and k are the temporal step size,the spatial step size,and the degree of piecewise P^(k)polynomials,respectively.Some numerical tests are provided to illustrate the accuracy and the capability of the scheme. 展开更多
关键词 variable-order derivative Discontinuous Galerkin method STABILITY Error estimates
在线阅读 下载PDF
Soliton solutions for nonlinear variable-order fractional Korteweg-de Vries(KdV)equation arising in shallow water waves
8
作者 Umair Ali Hijaz Ahmad Hanaa Abu-Zinadah 《Journal of Ocean Engineering and Science》 SCIE 2024年第1期50-58,共9页
Nonlinear fractional differential equations provide suitable models to describe real-world phenomena and many fractional derivatives are varying with time and space.The present study considers the advanced and broad s... Nonlinear fractional differential equations provide suitable models to describe real-world phenomena and many fractional derivatives are varying with time and space.The present study considers the advanced and broad spectrum of the nonlinear(NL)variable-order fractional differential equation(VO-FDE)in sense of VO Caputo fractional derivative(CFD)to describe the physical models.The VO-FDE transforms into an ordinary differential equation(ODE)and then solving by the modified(G/G)-expansion method.For ac-curacy,the space-time VO fractional Korteweg-de Vries(KdV)equation is solved by the proposed method and obtained some new types of periodic wave,singular,and Kink exact solutions.The newly obtained solutions confirmed that the proposed method is well-ordered and capable implement to find a class of NL-VO equations.The VO non-integer performance of the solutions is studied broadly by using 2D and 3D graphical representation.The results revealed that the NL VO-FDEs are highly active,functional and convenient in explaining the problems in scientific physics. 展开更多
关键词 Space-time VO fractional KdV equation modified(G′/G)-expansion method VO Caputo fractional derivative generalized Riccati equation
原文传递
Local Rate of Convergence in the Functional Limit Theorem for Increments of a Fractional Brownian Motion 被引量:1
9
作者 LIU Yonghong DING Ding ZHOU Xia 《数学进展》 北大核心 2025年第1期197-211,共15页
In this paper,we present local functional law of the iterated logarithm for Cs?rg?-Révész type increments of fractional Brownian motion.The results obtained extend works of Gantert[Ann.Probab.,1993,21(2):104... In this paper,we present local functional law of the iterated logarithm for Cs?rg?-Révész type increments of fractional Brownian motion.The results obtained extend works of Gantert[Ann.Probab.,1993,21(2):1045-1049]and Monrad and Rootzén[Probab.Theory Related Fields,1995,101(2):173-192]. 展开更多
关键词 fractional Brownian motion INCREMENT local functional law of the iterated logarithm large deviation small deviation
原文传递
APPROXIMATE CONTROLLABILITY OF NONLINEAR EVOLUTION FRACTIONAL CONTROL SYSTEM WITH DELAY 被引量:1
10
作者 Kamla Kant MISHRA Shruti DUBEY 《Acta Mathematica Scientia》 2025年第2期553-568,共16页
This article studies the existence and uniqueness of the mild solution of a family of control systems with a delay that are governed by the nonlinear fractional evolution differential equations in Banach spaces.Moreov... This article studies the existence and uniqueness of the mild solution of a family of control systems with a delay that are governed by the nonlinear fractional evolution differential equations in Banach spaces.Moreover,we establish the controllability of the considered system.To do so,first,we investigate the approximate controllability of the corresponding linear system.Subsequently,we prove the nonlinear system is approximately controllable if the corresponding linear system is approximately controllable.To reach the conclusions,the theory of resolvent operators,the Banach contraction mapping principle,and fixed point theorems are used.While concluding,some examples are given to demonstrate the efficacy of the proposed results. 展开更多
关键词 nonlinear fractional differential equation Caputo fractional derivative mild solution existence and uniqueness theorems approximate controllability
在线阅读 下载PDF
Fractional elastoplastic constitutive model for sandstone subjected to true-triaxial compressive loading 被引量:1
11
作者 Jiacun Liu Xing Li +2 位作者 Chonglang Wang Ying Xu Kaiwen Xia 《Journal of Rock Mechanics and Geotechnical Engineering》 2025年第9期5683-5694,共12页
A novel fractional elastoplastic constitutive model is proposed to accurately characterize the deformation of sandstone under true-triaxial stress states.This model is founded on the yield function and the fractional ... A novel fractional elastoplastic constitutive model is proposed to accurately characterize the deformation of sandstone under true-triaxial stress states.This model is founded on the yield function and the fractional flow rule.The yield function includes parameters that govern the evolution of yield surface,enabling an accurate description of three-dimensional stress states.The direction of plastic flow is governed by the two different fractional orders,which are functions of the plastic internal variable.Additionally,a detailed process is proposed for identifying the yield function parameters and fractional orders.Subsequently,the relationship between the fractional order and the direction of plastic flow in the meridian and deviatoric planes is examined,characterized by the dilation angle and the plastic deflection angle,respectively.The non-orthogonal flow rule,also referred to as the fractional flow rule,allows for a border range of plastic deflection and dilation angles compared to the orthogonal flow rule,thereby significantly enhancing its applicability.The validity and accuracy of proposed model are verified by comparing the analytical solution of the constitutive model with the experimental data.A comparison between the non-orthogonal flow rule and orthogonal flow rule is conducted in both the deviatoric and meridian planes.The further comparison of the stress-strain curves for the non-orthogonal and orthogonal flow rules demonstrates the superiority of the fractional constitutive model. 展开更多
关键词 Elastoplastic constitutive model True-triaxial stress Strength criterion Lode angle fractional flow rule SANDSTONE
在线阅读 下载PDF
Large Deviations for Fractional Stochastic Heat Equation with Gaussian Noise Rough in Space
12
作者 WANG Zhi LIU Junfeng 《数学进展》 北大核心 2025年第6期1368-1392,共25页
In this paper we study the Freidlin-Wentzell's large deviation principle for the following nonlinear fractional stochastic heat equation driven by Gaussian noise∂/∂tu^(ε)=D_(δ)^(α)(t,x)+√εσ(u^(ε)(t,x))W(t,x... In this paper we study the Freidlin-Wentzell's large deviation principle for the following nonlinear fractional stochastic heat equation driven by Gaussian noise∂/∂tu^(ε)=D_(δ)^(α)(t,x)+√εσ(u^(ε)(t,x))W(t,x),(t,x)∈[0,T]×R,where D_(δ)^(α)is a nonlocal fractional differential operator and W is the Gaussian noise which is white in time and behaves as a fractional Brownian motion with Hurst index H satisfying 3-α/4<H<1/2,in the space variable.The weak convergence approach plays an important role. 展开更多
关键词 fractional stochastic heat equation fractional Brownian motion large deviation principle weak convergence
原文传递
Least Energy Solutions for the Fractional Schrodinger–Poisson System with General Potential and Nonlinearity
13
作者 ZHU Shaojuan HUANG Xianjiu 《数学进展》 北大核心 2025年第5期1031-1058,共28页
In this paper,we study the existence of least energy solutions for the following nonlinear fractional Schrodinger–Poisson system{(−∆)^(s)u+V(x)u+φu=f(u)in R^(3),(−∆)^(t)φ=u^(2)in R^(3),where s∈(3/4,1),t∈(0,1).Und... In this paper,we study the existence of least energy solutions for the following nonlinear fractional Schrodinger–Poisson system{(−∆)^(s)u+V(x)u+φu=f(u)in R^(3),(−∆)^(t)φ=u^(2)in R^(3),where s∈(3/4,1),t∈(0,1).Under some assumptions on V(x)and f,using Nehari–Pohozaev identity and the arguments of Brezis–Nirenberg,the monotonic trick and global compactness lemma,we prove the existence of a nontrivial least energy solution. 展开更多
关键词 fractional Schrodinger-Poisson system variational method Nehari-Pohozaev identity least energy solution
原文传递
Transportation Cost-information Inequalities for Stochastic Heat Equations Driven by Fractional Noise
14
作者 ZHANG Bin YAO Zhigang LIU Junfeng 《数学进展》 北大核心 2025年第1期212-224,共13页
In this paper,we prove the transportation cost-information inequalities on the space of continuous paths with respect to the L~2-metric and the uniform metric for the law of the mild solution to the stochastic heat eq... In this paper,we prove the transportation cost-information inequalities on the space of continuous paths with respect to the L~2-metric and the uniform metric for the law of the mild solution to the stochastic heat equation defined on[0,T]×[0,1]driven by double-parameter fractional noise. 展开更多
关键词 transportation cost-information inequality stochastic heat equation fractional noise
原文传递
A composite controller for reactor core combining artificial neural network and fractional-order PID controller
15
作者 WANG Zhe-Zheng ZHANG Xiao DENG Ke 《四川大学学报(自然科学版)》 北大核心 2025年第4期1015-1024,共10页
Core power is a key parameter of nuclear reactor.Traditionally,the proportional-integralderivative(PID)controllers are used to control the core power.Fractional-order PID(FOPID)controller represents the cutting edge i... Core power is a key parameter of nuclear reactor.Traditionally,the proportional-integralderivative(PID)controllers are used to control the core power.Fractional-order PID(FOPID)controller represents the cutting edge in core power control research.In comparing with the integer-order models,fractional-order models describe the variation of core power more accurately,thus provide a comprehensive and realistic depiction for the power and state changes of reactor core.However,current fractional-order controllers cannot adjust their parameters dynamically to response the environmental changes or demands.In this paper,we aim at the stable control and dynamic responsiveness of core power.Based on the strong selflearning ability of artificial neural network(ANN),we propose a composite controller combining the ANN and FOPID controller.The FOPID controller is firstly designed and a back propagation neural network(BPNN)is then utilized to optimize the parameters of FOPID.It is shown by simulation that the composite controller enables the real-time parameter tuning via ANN and retains the advantage of FOPID controller. 展开更多
关键词 Nuclear reactor Core power fractional PID controller Artificial neural network
在线阅读 下载PDF
Hybrid Wavelet Methods for Nonlinear Multi-Term Caputo Variable-Order Partial Differential Equations
16
作者 Junseo Lee Bongsoo Jang Umer Saeed 《Computer Modeling in Engineering & Sciences》 2025年第8期2165-2189,共25页
In recent years,variable-order fractional partial differential equations have attracted growing interest due to their enhanced ability tomodel complex physical phenomena withmemory and spatial heterogeneity.However,ex... In recent years,variable-order fractional partial differential equations have attracted growing interest due to their enhanced ability tomodel complex physical phenomena withmemory and spatial heterogeneity.However,existing numerical methods often struggle with the computational challenges posed by such equations,especially in nonlinear,multi-term formulations.This study introduces two hybrid numerical methods—the Linear-Sine and Cosine(L1-CAS)and fast-CAS schemes—for solving linear and nonlinear multi-term Caputo variable-order(CVO)fractional partial differential equations.These methods combine CAS wavelet-based spatial discretization with L1 and fast algorithms in the time domain.A key feature of the approach is its ability to efficiently handle fully coupled spacetime variable-order derivatives and nonlinearities through a second-order interpolation technique.In addition,we derive CAS wavelet operational matrices for variable-order integration and for boundary value problems,forming the foundation of the spatial discretization.Numerical experiments confirm the accuracy,stability,and computational efficiency of the proposed methods. 展开更多
关键词 CAS wavelets operationalmatrices Caputo variable-order equations exponential-sum-approximation L1 approximation
在线阅读 下载PDF
Fractional Discrete-Time Analysis of an Emotional Model Built on a Chaotic Map through the Set of Equilibrium and Fixed Points
17
作者 Shaher Momani Rabha W.Ibrahim Yeliz Karaca 《Computer Modeling in Engineering & Sciences》 2025年第4期809-826,共18页
Fractional discrete systems can enable the modeling and control of the complicated processes more adaptable through the concept of versatility by providing systemdynamics’descriptions withmore degrees of freedom.Nume... Fractional discrete systems can enable the modeling and control of the complicated processes more adaptable through the concept of versatility by providing systemdynamics’descriptions withmore degrees of freedom.Numerical approaches have become necessary and sufficient to be addressed and employed for benefiting from the adaptability of such systems for varied applications.A variety of fractional Layla and Majnun model(LMM)system kinds has been proposed in the current work where some of these systems’key behaviors are addressed.In addition,the necessary and sufficient conditions for the stability and asymptotic stability of the fractional dynamic systems are investigated,as a result of which,the necessary requirements of the LMM to achieve constant and asymptotically steady zero resolutions are provided.As a special case,when Layla and Majnun have equal feelings,we propose an analysis of the system in view of its equilibrium and fixed point sets.Considering that the system has marginal stability if its eigenvalues have both negative and zero real portions,it is demonstrated that the system neither converges nor diverges to a steady trajectory or equilibrium point.It,rather,continues to hover along the line separating stability and instability based on the fractional LMM system. 展开更多
关键词 fractional difference system fractional differential operators fractional calculus chaotic map EQUILIBRIUM fixed point sets nyquist plot routh-Hurwitz criterion
在线阅读 下载PDF
DIRICHLET BOUNDARY VALUE PROBLEM FOR FRACTIONAL DEGENERATE ELLIPTIC OPERATOR ON CARNOT GROUPS
18
作者 Hua CHEN Yunlu FAN 《Acta Mathematica Scientia》 2025年第5期1942-1960,共19页
In this paper,we investigate a Dirichlet boundary value problem for a class of fractional degenerate elliptic equations on homogeneous Carnot groups G=(R^(n),o),namely{(-△_(G))^(s)u=f(x,u)+g(x,u)inΩ;u∈H_(0)^(s)(Ω)... In this paper,we investigate a Dirichlet boundary value problem for a class of fractional degenerate elliptic equations on homogeneous Carnot groups G=(R^(n),o),namely{(-△_(G))^(s)u=f(x,u)+g(x,u)inΩ;u∈H_(0)^(s)(Ω),where s∈(0,1),Ω■G is a bounded open domain,(-△_(G))^(s)is the fractional sub-Laplacian,H_(0)^(s)(Ω)denotes the fractional Sobolev space,f(x,u)∈C(Ω×R),g(x,u)is a Carath′eodory function on Ω×R.Using perturbation methods and Morse index estimates in conjunction with fractional Dirichlet eigenvalue estimates,we establish the existence of multiple solutions to the problem. 展开更多
关键词 Carnot group fractional sub-Laplacian perturbation methods fractional Dirich-let eigenvalue Morse index
在线阅读 下载PDF
Performance assessment of computed tomographic angiography fractional flow reserve using deep learning:SMART trial summary
19
作者 Wei ZHANG You-Bing YIN +9 位作者 Zhi-Qiang WANG Ying-Xin ZHAO Dong-Mei SHI Yong-He GUO Zhi-Ming ZHOU Zhi-Jian WANG Shi-Wei YANG De-An JIA Li-Xia YANG Yu-Jie ZHOU 《Journal of Geriatric Cardiology》 2025年第9期793-801,共9页
Background Non-invasive computed tomography angiography(CTA)-based fractional flow reserve(CT-FFR)could become a gatekeeper to invasive coronary angiography.Deep learning(DL)-based CT-FFR has shown promise when compar... Background Non-invasive computed tomography angiography(CTA)-based fractional flow reserve(CT-FFR)could become a gatekeeper to invasive coronary angiography.Deep learning(DL)-based CT-FFR has shown promise when compared to invasive FFR.To evaluate the performance of a DL-based CT-FFR technique,DeepVessel FFR(DVFFR).Methods This retrospective study was designed for iScheMia Assessment based on a Retrospective,single-center Trial of CTFFR(SMART).Patients suspected of stable coronary artery disease(CAD)and undergoing both CTA and invasive FFR examinations were consecutively selected from the Beijing Anzhen Hospital between January 1,2016 to December 30,2018.FFR obtained during invasive coronary angiography was used as the reference standard.DVFFR was calculated blindly using a DL-based CTFFR approach that utilized the complete tree structure of the coronary arteries.Results Three hundred and thirty nine patients(60.5±10.0 years and 209 men)and 414 vessels with direct invasive FFR were included in the analysis.At per-vessel level,sensitivity,specificity,accuracy,positive predictive value(PPV)and negative predictive value(NPV)of DVFFR were 94.7%,88.6%,90.8%,82.7%,and 96.7%,respectively.The area under the receiver operating characteristics curve(AUC)was 0.95 for DVFFR and 0.56 for CTA-based assessment with a significant difference(P<0.0001).At patient level,sensitivity,specificity,accuracy,PPV and NPV of DVFFR were 93.8%,88.0%,90.3%,83.0%,and 95.8%,respectively.The computation for DVFFR was fast with the average time of 22.5±1.9 s.Conclusions The results demonstrate that DVFFR was able to evaluate lesion hemodynamic significance accurately and effectively with improved diagnostic performance over CTA alone.Coronary artery disease(CAD)is a critical disease in which coronary artery luminal narrowing may result in myocardial ischemia.Early and effective assessment of myocardial ischemia is essential for optimal treatment planning so as to improve the quality of life and reduce medical costs. 展开更多
关键词 Coronary Artery Disease invasive coronary angiographydeep Diagnostic Performance ischemia assessment fractional flow reserve ct ffr could Deep Learning Ischemia Assessment fractional Flow Reserve
暂未订购
Stability analysis of conformable fractional order systems
20
作者 Imed Basdouri Souad Kasmi Jean Lerbet 《Applied Mathematics(A Journal of Chinese Universities)》 2025年第3期752-762,共11页
In this paper, we study the stability of a class of conformable fractional-order systems using the Lyapunov function. We assume that the nonlinear part of the system satisfies the one-sided Lipschitz condition and the... In this paper, we study the stability of a class of conformable fractional-order systems using the Lyapunov function. We assume that the nonlinear part of the system satisfies the one-sided Lipschitz condition and the quadratic inner-bounded condition. We provide some sufficient conditions that ensure the asymptotic stability of the system. Furthermore, we present the construction of a feedback stabilizing controller for conformable fractional bilinear systems. 展开更多
关键词 conformable fractional exponential stability asymptotical stability one-sided Lipschitz
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部