期刊文献+
共找到235篇文章
< 1 2 12 >
每页显示 20 50 100
New Type of Variable-coefficient KP Equation with Self-consistent Sources and Its Grammian Solutions
1
作者 XING Xiu-zhi LIU Yan-wei 《Chinese Quarterly Journal of Mathematics》 CSCD 2013年第1期152-158,共7页
New type of variable-coefficient KP equation with self-consistent sources and its Grammian solutions are obtained by using the source generation procedure.
关键词 source generation procedure variable-coefficient kp equation hipota’s bilinear method grammian solution
在线阅读 下载PDF
Pfaffianization of the variable-coefficient Kadomtsev-Petviashvili equation* 被引量:2
2
作者 张晴帆 范恩贵 《Chinese Physics B》 SCIE EI CAS CSCD 2007年第6期1505-1509,共5页
This paper constructs more general exact solutions than N-soliton solution and Wronskian solution for variable- coefficient Kadomtsev-Petviashvili (KP) equation. By using the Hirota method and Pfaffian technique, it... This paper constructs more general exact solutions than N-soliton solution and Wronskian solution for variable- coefficient Kadomtsev-Petviashvili (KP) equation. By using the Hirota method and Pfaffian technique, it finds the Grammian determinant-type solution for the variable-coefficient KP equation (VCKP), the Wronski-type Pfaffian solution and the Gram-type Pfaffian solutions for the Pfaffianized VCKP equation. 展开更多
关键词 variable-coefficient kp equation Pfaffian technique Pfaffian solution
原文传递
Extended Symmetry of Generalized Variable-Coefficient Kadomtsev-Petviashvili Equation
3
作者 王佳 李彪 叶望川 《Communications in Theoretical Physics》 SCIE CAS CSCD 2010年第4期698-702,共5页
In this paper, the extended symmetry of generalized variable-coeFficient Kadomtsev-Petviashvili (vcKP) equation is investigated by the extended symmetry group method with symbolic computation. Then on the basis of t... In this paper, the extended symmetry of generalized variable-coeFficient Kadomtsev-Petviashvili (vcKP) equation is investigated by the extended symmetry group method with symbolic computation. Then on the basis of the extended symmetry, we can establish relation among some different kinds of vcKP equations. Thus the exact solutions of these veKP equations can be constructed via the simple veKP equations or constant-coefficient KP equations. 展开更多
关键词 extended symmetry generalized variable-coefficient kp equation
在线阅读 下载PDF
An N-breather solution and hybrid solutions of rogue wave and breather for complex mKdV equation
4
作者 Wenjing Hu Hasi Gegen 《Chinese Physics B》 2025年第7期160-173,共14页
A compact Grammian form for N-breather solution to the complex m Kd V equation is derived using the bilinear Kadomtsev–Petviashvili hierarchy reduction method.The propagation trajectory,period,maximum points,and peak... A compact Grammian form for N-breather solution to the complex m Kd V equation is derived using the bilinear Kadomtsev–Petviashvili hierarchy reduction method.The propagation trajectory,period,maximum points,and peak value of the 1-breather solution are calculated.Additionally,through the asymptotic analysis of 2-breather solution,we show that two breathers undergo an elastic collision.By applying the generalized long-wave limit method,the fundamental and second-order rogue wave solutions for the complex m Kd V equation are obtained from the 1-breather and 2-breather solutions,respectively.We also construct the hybrid solution of a breather and a fundamental rogue wave for the complex m Kd V equation from the 2-breather solution.Furthermore,the hybrid solution of two breathers and a fundamental rogue wave as well as the hybrid solution of a breather and a second-order rogue wave for the complex m Kd V equation are derived from the 3-breather solution via the generalized long-wave limit method.By controlling the phase parameters of breathers,the diverse phenomena of interaction between the breathers and the rogue waves are demonstrated. 展开更多
关键词 complex mKdV equation hybrid solutions of breather and rogue wave kp hierarchy reduction method generalized long-wave limit method
原文传递
A Generalized Variable-Coefficient Algebraic Method Exactly Solving (3+1)-Dimensional Kadomtsev-Petviashvilli Equation 被引量:3
5
作者 BAI Cheng-Lin BAI Cheng-Jie ZHAO Hong 《Communications in Theoretical Physics》 SCIE CAS CSCD 2005年第5X期821-826,共6页
A generalized variable-coefficient algebraic method is appfied to construct several new families of exact solutions of physical interest for (3+1)-dimensional Kadomtsev-Petviashvilli (KP) equation. Among them, th... A generalized variable-coefficient algebraic method is appfied to construct several new families of exact solutions of physical interest for (3+1)-dimensional Kadomtsev-Petviashvilli (KP) equation. Among them, the Jacobi elliptic periodic solutions exactly degenerate to the soliton solutions at a certain limit condition. Compared with the existing tanh method, the extended tanh method, the Jacobi elliptic function method, and the algebraic method, the proposed method gives new and more general solutions. 展开更多
关键词 generalized variable-coefficient algebraic method (3+1)-dimensional kp equation exact explicit solutions
在线阅读 下载PDF
Wronskian and Grammian Determinant Solutions for a Variable-Coefficient Kadomtsev-Petviashvili Equation 被引量:3
6
作者 YAO Zhen-Zhi ZHANG Chun-Yi +4 位作者 ZHU Hong-Wu MENG Xiang-Hua LU Xing SHAN Wen-Rui TIAN Bo 《Communications in Theoretical Physics》 SCIE CAS CSCD 2008年第5期1125-1128,共4页
In this paper, we derive the bilinear form for a variable-coefficient Kadomtsev Petviashvili-typed equation. Based on the bilinear form, we obtain the Wronskian determinant solution, which is proved to be indeed an ex... In this paper, we derive the bilinear form for a variable-coefficient Kadomtsev Petviashvili-typed equation. Based on the bilinear form, we obtain the Wronskian determinant solution, which is proved to be indeed an exact solution of this equation through the Wronskian technique. In addition, we testify that this equation can be reduced to a Jacobi identity by considering its solution as a Grammian determinant by means of Pfaffian derivative formulae. 展开更多
关键词 variable-coefficient Kadomtsev-Petviashvili equation Wronskian determinant Grammian deter-minant PFAFFIAN Jacobi identity
在线阅读 下载PDF
Lax Pair and Darboux Transformation for a Variable-Coefficient Fifth-Order Korteweg-de Vries Equation with Symbolic Computation 被引量:2
7
作者 ZHANG Ya-Xing ZHANG Hai-Qiang +3 位作者 LI Juan XU Tao ZHANG Chun-Yi TIAN Bo 《Communications in Theoretical Physics》 SCIE CAS CSCD 2008年第4期833-838,共6页
In this paper, we put our focus on a variable-coe^cient fifth-order Korteweg-de Vries (fKdV) equation, which possesses a great number of excellent properties and is of current importance in physical and engineering ... In this paper, we put our focus on a variable-coe^cient fifth-order Korteweg-de Vries (fKdV) equation, which possesses a great number of excellent properties and is of current importance in physical and engineering fields. Certain constraints are worked out, which make sure the integrability of such an equation. Under those constraints, some integrable properties are derived, such as the Lax pair and Darboux transformation. Via the Darboux transformation, which is an exercisable way to generate solutions in a recursive manner, the one- and two-solitonic solutions are presented and the relevant physical applications of these solitonic structures in some fields are also pointed out. 展开更多
关键词 variable-coefficient fifth-order Korteweg-de Vries equation Lax pair Darboux transformation solitonic solutions symbolic computation
在线阅读 下载PDF
Painleve Analysis and Determinant Solutions of a (3+1)-Dimensional Variable-Coefficient Kadomtsev-Petviashvili Equation in Wronskian and Grammian Form 被引量:2
8
作者 MENG Xiang-Hua TIAN Bo +2 位作者 FENG Qian YAO Zhen-Zhi GAO Yi-Tian 《Communications in Theoretical Physics》 SCIE CAS CSCD 2009年第6期1062-1068,共7页
In this paper, the investigation is focused on a (3+1)-dimensional variable-coefficient Kadomtsev- Petviashvili (vcKP) equation, which can describe the realistic nonlinear phenomena in the fluid dynamics and plas... In this paper, the investigation is focused on a (3+1)-dimensional variable-coefficient Kadomtsev- Petviashvili (vcKP) equation, which can describe the realistic nonlinear phenomena in the fluid dynamics and plasma in three spatial dimensions. In order to study the integrability property of such an equation, the Painlevé analysis is performed on it. And then, based on the truncated Painlevé expansion, the bilinear form of the (3+1)-dimensionaJ vcKP equation is obtained under certain coefficients constraint, and its solution in the Wronskian determinant form is constructed and verified by virtue of the Wronskian technique. Besides the Wronskian determinant solution, it is shown that the (3+1)-dimensional vcKP equation also possesses a solution in the form of the Grammian determinant. 展开更多
关键词 (3+1)-dimensional variable-coefficient Kadomtsev-Petviashvili equation Painlev@ analysis bilinear form Wronskian determinant Grammian determinant symbolic computation
在线阅读 下载PDF
Exact Solutions for a Nonisospectral and Variable-Coefficient KdV Equation 被引量:1
9
作者 DENGShu-Fang 《Communications in Theoretical Physics》 SCIE CAS CSCD 2005年第6期961-964,共4页
The bilinear form for a nonisospectral and variable-coefficient KdV equation is obtained and some exact soliton solutions are derived through Hirota method and Wronskian technique. We also derive the bilmear transform... The bilinear form for a nonisospectral and variable-coefficient KdV equation is obtained and some exact soliton solutions are derived through Hirota method and Wronskian technique. We also derive the bilmear transformation from its Lax pairs and End solutions with the help of the obtained bilinear transformation. 展开更多
关键词 nonisospectral and variable-coefficient KdV equation Hirota method Wronskian technique TRANSFORMATION
在线阅读 下载PDF
Riemann theta function periodic wave solutions for the variable-coefficient mKdV equation 被引量:1
10
作者 张翼 程智龙 郝晓红 《Chinese Physics B》 SCIE EI CAS CSCD 2012年第12期23-30,共8页
In this paper, a variable-coefficient modified Korteweg-de Vries (vc-mKdV) equation is considered. Bilinear forms are presented to explicitly construct periodic wave solutions based on a multidimensional Riemann the... In this paper, a variable-coefficient modified Korteweg-de Vries (vc-mKdV) equation is considered. Bilinear forms are presented to explicitly construct periodic wave solutions based on a multidimensional Riemann theta function, then the one and two periodic wave solutions are presented~ and it is also shown that the soliton solutions can be reduced from the periodic wave solutions. 展开更多
关键词 variable-coefficient mKdV equation Riemann theta function soliton solutions periodic wave solutions
原文传递
Infinite Sequence of Conservation Laws and Analytic Solutions for a Generalized Variable-Coefficient Fifth-Order Korteweg-de Vries Equation in Fluids 被引量:1
11
作者 于鑫 高以天 +1 位作者 孙志远 刘颖 《Communications in Theoretical Physics》 SCIE CAS CSCD 2011年第4期629-634,共6页
In this paper, an infinite sequence of conservation laws for a generalized variable-coefficient fifth-order Korteweg-de Vries equation in fluids are constructed based on the Backlund transformation. Hirota bilinear fo... In this paper, an infinite sequence of conservation laws for a generalized variable-coefficient fifth-order Korteweg-de Vries equation in fluids are constructed based on the Backlund transformation. Hirota bilinear form and symbolic computation are applied to obtain three kinds of solutions. Variable coefficients can affect the conserved density, associated flux, and appearance of the characteristic lines. Effects of the wave number on the soliton structures are also discussed and types of soliton structures, e.g., the double-periodic soliton, parallel soliton and soliton complexes, are presented. 展开更多
关键词 variable-coefficient fifth-order Korteweg-de Vries equation in fluids infinite sequence of conservation laws Hirota bilinear method soliton solutions wave number symbolic computation
在线阅读 下载PDF
Nonsingular Positon Solutions of a Variable-Coefficient Modified KdV Equation 被引量:1
12
作者 Yi Lin Chuanzhong Li Jingsong He 《Open Journal of Applied Sciences》 2013年第1期102-105,共4页
The determinant representation of three-fold Darboux transformation for a variable-coefficient modified KdV equation is displayed based on the technique used to solve Ablowitz-Kaup-Newell-Segur system. Additionally, t... The determinant representation of three-fold Darboux transformation for a variable-coefficient modified KdV equation is displayed based on the technique used to solve Ablowitz-Kaup-Newell-Segur system. Additionally, the nonsingular positon solutions of the variable-coefficient modified KdV equation are firstly discovered analytically and graphically. 展开更多
关键词 variable-coefficient KdV equation LAX Pair DARBOUX Transformation POSITON Soliton-Positon
在线阅读 下载PDF
Interaction phenomena between lump and solitary wave of a generalized (3+1)-dimensional variable-coefficient nonlinear-wave equation in liquid with gas bubbles
13
作者 Jian-Guo Liu Wen-Hui Zhu +1 位作者 Yan He Ya-Kui Wu 《Communications in Theoretical Physics》 SCIE CAS CSCD 2020年第8期18-26,共9页
In this paper, a generalized (3+1)-dimensional variable-coefficient nonlinear-wave equation is studied in liquid with gas bubbles. Based on the Hirota’s bilinear form and symbolic computation, lump and interaction so... In this paper, a generalized (3+1)-dimensional variable-coefficient nonlinear-wave equation is studied in liquid with gas bubbles. Based on the Hirota’s bilinear form and symbolic computation, lump and interaction solutions between lump and solitary wave are obtained,which include a periodic-shape lump solution, a parabolic-shape lump solution, a cubic-shape lump solution, interaction solutions between lump and one solitary wave, and between lump and two solitary waves. The spatial structures called the bright lump wave and the bright-dark lump wave are discussed. Interaction behaviors of two bright-dark lump waves and a periodic-shape bright lump wave are also presented. Their interactions are shown in some 3D plots. 展开更多
关键词 solitary wave lump wave variable-coefficient nonlinear-wave equation interaction behaviors
原文传递
The Quasi-Periodic Solutions for the Variable-Coefficient KdV Equation
14
作者 欧阳凤娇 邓淑芳 《Communications in Theoretical Physics》 SCIE CAS CSCD 2012年第10期475-479,共5页
Hirota method is used to directly construct quasi-periodic wave solutions for the nonisospectral soliton equation.One and two quasi-periodic wave solutions for the variable-coefficient KdV equation are studied.The wel... Hirota method is used to directly construct quasi-periodic wave solutions for the nonisospectral soliton equation.One and two quasi-periodic wave solutions for the variable-coefficient KdV equation are studied.The well known one-soliton solution can be reduced from the one quasi-periodic wave solution. 展开更多
关键词 variable-coefficient KdV equation Hirota method quasi-periodic solution
原文传递
Wronskian Form of N-Solitonic Solution for a Variable-Coefficient Korteweg-de Vries Equation with Nonuniformities
15
作者 CAI Ke-Jie TIAN Bo +5 位作者 ZHANG Cheng ZHANG Huan MENG Xiang-Hua LU Xing GENG Tao LIU Wen-Jun 《Communications in Theoretical Physics》 SCIE CAS CSCD 2008年第11期1185-1188,共4页
By the symbolic computation and Hirota method, the bilinear form and an auto-Backlund transformation for a variable-coemcient Korteweg-de Vries equation with nonuniformities are given. Then, the N-solitonic solution i... By the symbolic computation and Hirota method, the bilinear form and an auto-Backlund transformation for a variable-coemcient Korteweg-de Vries equation with nonuniformities are given. Then, the N-solitonic solution in terms of Wronskian form is obtained and verified. In addition, it is shown that the (N - 1)- and N-solitonic solutions satisfy the auto-Backlund transformation through the Wronskian technique. 展开更多
关键词 variable-coefficient KdV equation bilinear auto-Bocklund transformation N-solitonic solution Wronskian determinant
在线阅读 下载PDF
Using reproducing kernel for solving a class of partial differential equation with variable-coefficients
16
作者 王玉兰 朝鲁 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 2008年第1期129-137,共9页
How to solve the partial differential equation has been attached importance to by all kinds of fields. The exact solution to a class of partial differential equation with variable-coefficient is obtained in reproducin... How to solve the partial differential equation has been attached importance to by all kinds of fields. The exact solution to a class of partial differential equation with variable-coefficient is obtained in reproducing kernel space. For getting the approximate solution, give an iterative method, convergence of the iterative method is proved. The numerical example shows that our method is effective and good practicability. 展开更多
关键词 iterative method exact solution approximate solution variable-coefficient partial differential equation reproducing kernel
在线阅读 下载PDF
Collisions Between Lumps/Rogue Waves and Solitons for A(3+1)-Dimensional Generalized Variable-Coefficient Shallow Water Wave Equation
17
作者 WU Xiao-yu DU Zhong 《China Ocean Engineering》 SCIE EI CSCD 2022年第5期808-813,共6页
In this paper,we investigate a(3+1)-dimensional generalized variable-coefficient shallow water wave equation,which can be used to describe the flow below a pressure surface in oceanography and atmospheric science.Empl... In this paper,we investigate a(3+1)-dimensional generalized variable-coefficient shallow water wave equation,which can be used to describe the flow below a pressure surface in oceanography and atmospheric science.Employing the Kadomtsev−Petviashvili hierarchy reduction,we obtain the semi-rational solutions which describe the lumps and rogue waves interacting with the kink solitons.We find that the lump appears from one kink soliton and fuses into the other on the x−y and x−t planes.However,on the x−z plane,the localized waves in the middle of the parallel kink solitons are in two forms:lumps and line rogue waves.The effects of the variable coefficients on the two forms are discussed.The dispersion coefficient influences the speed of solitons,while the background coefficient influences the background’s height. 展开更多
关键词 variable-coefficient shallow water wave equation lumps linear rogue waves Kadomtsev-Petviashvili hierarchy reduction
在线阅读 下载PDF
Consistent Riccati expansion solvability,symmetries,and analytic solutions of a forced variable-coefficient extended Korteveg-de Vries equation in fluid dynamics of internal solitary waves
18
作者 Ping Liu Bing Huang +1 位作者 Bo Ren Jian-Rong Yang 《Chinese Physics B》 SCIE EI CAS CSCD 2021年第8期198-205,共8页
We study a forced variable-coefficient extended Korteweg-de Vries(KdV)equation in fluid dynamics with respect to internal solitary wave.Bäcklund transformations of the forced variable-coefficient extended KdV equ... We study a forced variable-coefficient extended Korteweg-de Vries(KdV)equation in fluid dynamics with respect to internal solitary wave.Bäcklund transformations of the forced variable-coefficient extended KdV equation are demonstrated with the help of truncated Painlevéexpansion.When the variable coefficients are time-periodic,the wave function evolves periodically over time.Symmetry calculation shows that the forced variable-coefficient extended KdV equation is invariant under the Galilean transformations and the scaling transformations.One-parameter group transformations and one-parameter subgroup invariant solutions are presented.Cnoidal wave solutions and solitary wave solutions of the forced variable-coefficient extended KdV equation are obtained by means of function expansion method.The consistent Riccati expansion(CRE)solvability of the forced variable-coefficient extended KdV equation is proved by means of CRE.Interaction phenomenon between cnoidal waves and solitary waves can be observed.Besides,the interaction waveform changes with the parameters.When the variable parameters are functions of time,the interaction waveform will be not regular and smooth. 展开更多
关键词 forced variable-coefficient extended KdV equation consistent Riccati expansion analytic solution interaction wave solution
原文传递
Variable-Coefficient Mapping Method Based on Elliptical Equation and Exact Solutions to Nonlinear SchrSdinger Equations with Variable Coefficient
19
作者 GE Jian-Ya WANG Rui-Min +1 位作者 DAI Chao-Qing ZHANG Jie-Fang 《Communications in Theoretical Physics》 SCIE CAS CSCD 2006年第4X期656-662,共7页
In this paper, by means of the variable-coefficient mapping method based on elliptical equation, we obtain explicit solutions of nonlinear Schrodinger equation with variable-coefficient. These solutions include Jacobi... In this paper, by means of the variable-coefficient mapping method based on elliptical equation, we obtain explicit solutions of nonlinear Schrodinger equation with variable-coefficient. These solutions include Jacobian elliptic function solutions, solitary wave solutions, soliton-like solutions, and trigonometric function solutions, among which some are found for the first time. Six figures are given to illustrate some features of these solutions. The method can be applied to other nonlinear evolution equations in mathematical physics. 展开更多
关键词 variable-coefficient mapping method based on elliptical equation nonlinear Schrodinger equation Jacobian elliptic function solutions solitonic solutions trigonometric function solutions
在线阅读 下载PDF
Multi-Waves,Breathers,Periodic and Cross-Kink Solutions to the(2+1)-Dimensional Variable-Coefficient Caudrey-Dodd-Gibbon-Kotera-Sawada Equation
20
作者 LIU Dong JU Xiaodong +2 位作者 ILHAN Onur Alp MANAFIAN Jalil ISMAEL Hajar Farhan 《Journal of Ocean University of China》 SCIE CAS CSCD 2021年第1期35-44,共10页
The present article deals with multi-waves and breathers solution of the(2+1)-dimensional variable-coefficient CaudreyDodd-Gibbon-Kotera-Sawada equation under the Hirota bilinear operator method.The obtained solutions... The present article deals with multi-waves and breathers solution of the(2+1)-dimensional variable-coefficient CaudreyDodd-Gibbon-Kotera-Sawada equation under the Hirota bilinear operator method.The obtained solutions for solving the current equation represent some localized waves including soliton,solitary wave solutions,periodic and cross-kink solutions in which have been investigated by the approach of the bilinear method.Mainly,by choosing specific parameter constraints in the multi-waves and breathers,all cases the periodic and cross-kink solutions can be captured from the 1-and 2-soliton.The obtained solutions are extended with numerical simulation to analyze graphically,which results in 1-and 2-soliton solutions and also periodic and cross-kink solutions profiles.That will be extensively used to report many attractive physical phenomena in the fields of acoustics,heat transfer,fluid dynamics,classical mechanics,and so on.We have shown that the assigned method is further general,efficient,straightforward,and powerful and can be exerted to establish exact solutions of diverse kinds of fractional equations originated in mathematical physics and engineering.We have depicted the figures of the evaluated solutions in order to interpret the physical phenomena. 展开更多
关键词 variable-coefficient Caudrey-Dodd-Gibbon-Kotera-Sawada equation Hirota bilinear operator method soliton multi-waves and breathers periodic and cross-kink solitray wave solutions
在线阅读 下载PDF
上一页 1 2 12 下一页 到第
使用帮助 返回顶部