A variable camber wing driven by pneumatic artificial muscles is developed in this paper. Firstly, the experimental setup to measure the static output force of pneumatic artificial muscle is designed and the relations...A variable camber wing driven by pneumatic artificial muscles is developed in this paper. Firstly, the experimental setup to measure the static output force of pneumatic artificial muscle is designed and the relationship between the static output force and the air pressure is investigated. Experimental results show that the static output force of pneumatic artificial muscle decreases nonlinearly with the increase of contraction ratio. Secondly, the model of variable camber wing driven by pneumatic artificial muscles is manufactured to validate the variable camber concept. Finally, wind tunnel tests are conducted in the low speed wind tunnel. It is found that the wing camber increases with the increase of air pressure. When the air pressure of PAMs is 0.4 MPa and 0.5 MPa, the tip displacement of the trailing-edge is 3 mm and 5 mm, respectively. The lift of aerofoil with flexible trailing-edge increases by 87% at AOA of 5°.展开更多
In this paper,we establish some strong laws of large numbers,which are for nonindependent random variables under the framework of sublinear expectations.One of our main results is for blockwise m-dependent random vari...In this paper,we establish some strong laws of large numbers,which are for nonindependent random variables under the framework of sublinear expectations.One of our main results is for blockwise m-dependent random variables,and another is for sub-orthogonal random variables.Both extend the strong law of large numbers for independent random variables under sublinear expectations to the non-independent case.展开更多
The method for analyzing the deformation of flexible skin under the air loads was developed based on the panel method and finite element method.The deformation of flexible skin under air pressures and effects of the l...The method for analyzing the deformation of flexible skin under the air loads was developed based on the panel method and finite element method.The deformation of flexible skin under air pressures and effects of the local deformation on the aerodynamic characteristics were discussed.Numerical results show that the flexible skin on the upper surface of trailing-edge will bubble under the air loads and the bubble has a powerful effect on the aerodynamic pressure near the surface of local deforma-tion.Then the stiffness requirements for flexible skin of variable trailing-edge were given by using the Jacobs rule,i.e.,the maximum displacement of skin is not greater than 0.1% of wing chord.Results show that the in-plane stiffness can be reduced by increasing the ratio of bending stiffness to in-plane stiffness.Although the deformation of flexible skin increases with the in-plane stiffness decreasing,it depends on the bending stiffness.When the bending stiffness exceeds critical value,the deformation of flexible skin only depends on the bending stiffness and has nothing to do with the in-plane stiffness.The conclusions can be used for the structural design of flexible skin.展开更多
Trailing-edge flap is traditionally used to improve the takeoff and landing aerodynamic performance of aircraft.In order to improve flight efficiency during takeoff,cruise and landing states,the flexible variable camb...Trailing-edge flap is traditionally used to improve the takeoff and landing aerodynamic performance of aircraft.In order to improve flight efficiency during takeoff,cruise and landing states,the flexible variable camber trailing-edge flap is introduced,capable of changing its shape smoothly from 50% flap chord to the rear of the flap.Using a numerical simulation method for the case of the GA(W)-2 airfoil,the multi-objective optimization of the overlap,gap,deflection angle,and bending angle of the flap under takeoff and landing configurations is studied.The optimization results show that under takeoff configuration,the variable camber trailing-edge flap can increase lift coefficient by about 8% and lift-to-drag ratio by about 7% compared with the traditional flap at a takeoff angle of 8°.Under landing configuration,the flap can improve the lift coefficient at a stall angle of attack about 1.3%.Under cruise state,the flap helps to improve the lift-todrag ratio over a wide range of lift coefficients,and the maximum increment is about 30%.Finally,a corrugated structure–eccentric beam combination bending mechanism is introduced in this paper to bend the flap by rotating the eccentric beam.展开更多
An internal state variable(ISV)model was established according to the experimental results of hot plane strain compression(PSC)to predict the microstructure evolution during hot spinning of ZK61 alloy.The effects of t...An internal state variable(ISV)model was established according to the experimental results of hot plane strain compression(PSC)to predict the microstructure evolution during hot spinning of ZK61 alloy.The effects of the internal variables were considered in this ISV model,and the parameters were optimized by genetic algorithm.After validation,the ISV model was used to simulate the evolution of grain size(GS)and dynamic recrystallization(DRX)fraction during hot spinning via Abaqus and its subroutine Vumat.By comparing the simulated results with the experimental results,the application of the ISV model was proven to be reliable.Meanwhile,the strength of the thin-walled spun ZK61 tube increased from 303 to 334 MPa due to grain refinement by DRX and texture strengthening.Besides,some ultrafine grains(0.5μm)that played an important role in mechanical properties were formed due to the proliferation,movement,and entanglement of dislocations during the spinning process.展开更多
In order to solve the problem of the variable coefficient ordinary differen-tial equation on the bounded domain,the Lagrange interpolation method is used to approximate the exact solution of the equation,and the error...In order to solve the problem of the variable coefficient ordinary differen-tial equation on the bounded domain,the Lagrange interpolation method is used to approximate the exact solution of the equation,and the error between the numerical solution and the exact solution is obtained,and then compared with the error formed by the difference method,it is concluded that the Lagrange interpolation method is more effective in solving the variable coefficient ordinary differential equation.展开更多
Large-scale Language Models(LLMs)have achieved significant breakthroughs in Natural Language Processing(NLP),driven by the pre-training and fine-tuning paradigm.While this approach allows models to specialize in speci...Large-scale Language Models(LLMs)have achieved significant breakthroughs in Natural Language Processing(NLP),driven by the pre-training and fine-tuning paradigm.While this approach allows models to specialize in specific tasks with reduced training costs,the substantial memory requirements during fine-tuning present a barrier to broader deployment.Parameter-Efficient Fine-Tuning(PEFT)techniques,such as Low-Rank Adaptation(LoRA),and parameter quantization methods have emerged as solutions to address these challenges by optimizing memory usage and computational efficiency.Among these,QLoRA,which combines PEFT and quantization,has demonstrated notable success in reducing memory footprints during fine-tuning,prompting the development of various QLoRA variants.Despite these advancements,the quantitative impact of key variables on the fine-tuning performance of quantized LLMs remains underexplored.This study presents a comprehensive analysis of these key variables,focusing on their influence across different layer types and depths within LLM architectures.Our investigation uncovers several critical findings:(1)Larger layers,such as MLP layers,can maintain performance despite reductions in adapter rank,while smaller layers,like self-attention layers,aremore sensitive to such changes;(2)The effectiveness of balancing factors depends more on specific values rather than layer type or depth;(3)In quantization-aware fine-tuning,larger layers can effectively utilize smaller adapters,whereas smaller layers struggle to do so.These insights suggest that layer type is a more significant determinant of fine-tuning success than layer depth when optimizing quantized LLMs.Moreover,for the same discount of trainable parameters,reducing the trainable parameters in a larger layer is more effective in preserving fine-tuning accuracy than in a smaller one.This study provides valuable guidance for more efficient fine-tuning strategies and opens avenues for further research into optimizing LLM fine-tuning in resource-constrained environments.展开更多
We consider a single server constant retrial queue,in which a state-dependent service policy is used to control the service rate.Customer arrival follows Poisson process,while service time and retrial time are exponen...We consider a single server constant retrial queue,in which a state-dependent service policy is used to control the service rate.Customer arrival follows Poisson process,while service time and retrial time are exponential distributions.Whenever the server is available,it admits the retrial customers into service based on a first-come first-served rule.The service rate adjusts in real-time based on the retrial queue length.An iterative algorithm is proposed to numerically solve the personal optimal problem in the fully observable scenario.Furthermore,we investigate the impact of parameters on the social optimal threshold.The effectiveness of the results is illustrated by two examples.展开更多
Owls exhibit remarkably silent flight,largely attributed to trailing-edge(TE)serrations on their wings.Inspired by this biological adaptation,TE serrations have become promising passive-noise-control strategies for ae...Owls exhibit remarkably silent flight,largely attributed to trailing-edge(TE)serrations on their wings.Inspired by this biological adaptation,TE serrations have become promising passive-noise-control strategies for aerodynamic devices,including drones and wind turbines.However,conventional designs typically feature single-scale geometries—Such as sawtooth or sinusoidal serrations—that fail to replicate the owl’s inherently dual-scale morphology:Macro-scale waviness formed by feather tips combined with micro-scale morphology.Here,we introduce and evaluate a hybrid TE serration design that incorporates both macro-scale wave patterns and micro-scale fringe-like elements to closely emulate the owl wing structure.Using large-eddy simulations coupled with the Ffowcs Williams-Hawkings acoustic analogy,we assess three configurations:A smooth baseline,a conventional wavy serration,and the proposed hybrid serration.Our results indicate that the hybrid configuration achieves an overall noise reduction of about 12 dB relative to the smooth baseline,surpassing the conventional wavy configuration by approximately 2.5 dB,while preserving aerodynamic performance as measured by lift-to-drag ratio.Flow-field analyses further reveal that dual-scale serrations effectively suppress TE pressure fluctuations,highlighting a key aeroacoustic advantage of the owl-inspired hybrid approach.These insights advance our understanding of bioinspired noisecontrol mechanisms and provide practical guidelines for designing quieter aerodynamic systems.展开更多
Fiber-reinforced composites are an ideal material for the lightweight design of aerospace structures. Especially in recent years, with the rapid development of composite additive manufacturing technology, the design o...Fiber-reinforced composites are an ideal material for the lightweight design of aerospace structures. Especially in recent years, with the rapid development of composite additive manufacturing technology, the design optimization of variable stiffness of fiber-reinforced composite laminates has attracted widespread attention from scholars and industry. In these aerospace composite structures, numerous cutout panels and shells serve as access points for maintaining electrical, fuel, and hydraulic systems. The traditional fiber-reinforced composite laminate subtractive drilling manufacturing inevitably faces the problems of interlayer delamination, fiber fracture, and burr of the laminate. Continuous fiber additive manufacturing technology offers the potential for integrated design optimization and manufacturing with high structural performance. Considering the integration of design and manufacturability in continuous fiber additive manufacturing, the paper proposes linear and nonlinear filtering strategies based on the Normal Distribution Fiber Optimization (NDFO) material interpolation scheme to overcome the challenge of discrete fiber optimization results, which are difficult to apply directly to continuous fiber additive manufacturing. With minimizing structural compliance as the objective function, the proposed approach provides a strategy to achieve continuity of discrete fiber paths in the variable stiffness design optimization of composite laminates with regular and irregular holes. In the variable stiffness design optimization model, the number of candidate fiber laying angles in the NDFO material interpolation scheme is considered as design variable. The sensitivity information of structural compliance with respect to the number of candidate fiber laying angles is obtained using the analytical sensitivity analysis method. Based on the proposed variable stiffness design optimization method for complex perforated composite laminates, the numerical examples consider the variable stiffness design optimization of typical non-perforated and perforated composite laminates with circular, square, and irregular holes, and systematically discuss the number of candidate discrete fiber laying angles, discrete fiber continuous filtering strategies, and filter radius on structural compliance, continuity, and manufacturability. The optimized discrete fiber angles of variable stiffness laminates are converted into continuous fiber laying paths using a streamlined process for continuous fiber additive manufacturing. Meanwhile, the optimized non-perforated and perforated MBB beams after discrete fiber continuous treatment, are manufactured using continuous fiber co-extrusion additive manufacturing technology to verify the effectiveness of the variable stiffness fiber optimization framework proposed in this paper.展开更多
The complete convergence for weighted sums of sequences of independent,identically distributed random variables under sublinear expectation space is studied.By moment inequality and truncation methods,we establish the...The complete convergence for weighted sums of sequences of independent,identically distributed random variables under sublinear expectation space is studied.By moment inequality and truncation methods,we establish the equivalent conditions of complete convergence for weighted sums of sequences of independent,identically distributed random variables under sublinear expectation space.The results complement the corresponding results in probability space to those for sequences of independent,identically distributed random variables under sublinear expectation space.展开更多
With the application of 2.5D Woven Variable Thickness Composites(2.5DWVTC)in aviation and other fields,the issue of strength failure in this composite type has become a focal point.First,a three-step modeling approach...With the application of 2.5D Woven Variable Thickness Composites(2.5DWVTC)in aviation and other fields,the issue of strength failure in this composite type has become a focal point.First,a three-step modeling approach is proposed to rapidly construct full-scale meso-finite element models for Outer Reduction Yarn Woven Composites(ORYWC)and Inner Reduction Yarn Woven Composites(IRYWC).Then,six independent damage variables are identified:yarn fiber tension/compression,yarn matrix tension/compression,and resin matrix tension/compression.These variables are utilized to establish the constitutive equation of woven composites,considering the coupling effects of microscopic damage.Finally,combined with the Hashin failure criterion and von Mises failure criterion,the strength prediction model is implemented in ANSYS using APDL language to simulate the strength failure process of 2.5DWVTC.The results show that the predicted stiffness and strength values of various parts of ORYWC and IRYWC are in good agreement with the relevant test results.展开更多
In this paper,by utilizing the Marcinkiewicz-Zygmund inequality and Rosenthal-type inequality of negatively superadditive dependent(NSD)random arrays and truncated method,we investigate the complete f-moment convergen...In this paper,by utilizing the Marcinkiewicz-Zygmund inequality and Rosenthal-type inequality of negatively superadditive dependent(NSD)random arrays and truncated method,we investigate the complete f-moment convergence of NSD random variables.We establish and improve a general result on the complete f-moment convergence for Sung’s type randomly weighted sums of NSD random variables under some general assumptions.As an application,we show the complete consistency for the randomly weighted estimator in a nonparametric regression model based on NSD errors.展开更多
We investigate a class of elliptic equations with an L^(1)source in the framework of variable exponent spaces.A key characteristic of these equations is the coexistence of a degenerate coercivity term and a lower-orde...We investigate a class of elliptic equations with an L^(1)source in the framework of variable exponent spaces.A key characteristic of these equations is the coexistence of a degenerate coercivity term and a lower-order convection term.By employing innovative integralbased test functions,we derive the necessary a priori estimates.To prove the convergence of solutions to the degenerate coercivity problem,we adopt a method that combines monotonicity and truncation techniques.This approach allows us to demonstrate that the gradient sequences converge almost everywhere.展开更多
In this paper we present certain bilinear estimates for commutators on Besov spaces with variable smoothness and integrability,and under no vanishing assumptions on the divergence of vector fields.Such commutator esti...In this paper we present certain bilinear estimates for commutators on Besov spaces with variable smoothness and integrability,and under no vanishing assumptions on the divergence of vector fields.Such commutator estimates are motivated by the study of well-posedness results for some models in incompressible fuid mechanics.展开更多
The development of chassis active safety control technology has improved vehicle stability under extreme conditions.However,its cross-system and multi-functional characteristics make the controller difficult to achiev...The development of chassis active safety control technology has improved vehicle stability under extreme conditions.However,its cross-system and multi-functional characteristics make the controller difficult to achieve cooperative goals.In addition,the chassis system,which has high complexity,numerous subsystems,and strong coupling,will also lead to low computing efficiency and poor control effect of the controller.Therefore,this paper proposes a scenario-driven hybrid distributed model predictive control algorithm with variable control topology.This algorithm divides multiple stability regions based on the vehicle’s β−γ phase plane,forming a mapping relationship between the control structure and the vehicle’s state.A control input fusion mechanism within the transition domain is designed to mitigate the problems of system state oscillation and control input jitter caused by switching control structures.Then,a distributed state-space equation with state coupling and input coupling characteristics is constructed,and a weighted local agent cost function in quadratic programming is derived.Through cost coupling,local agents can coordinate global performance goals.Finally,through Simulink/CarSim joint simulation and hardware-in-the-loop(HIL)test,the proposed algorithm is validated to improve vehicle stability while ensuring trajectory tracking accuracy and has good applicability for multi-objective coordinated control.This paper combines the advantages of distributed MPC and decentralized MPC,achieving a balance between approximating the global optimal results and the solution’s efficiency.展开更多
Cold seeps are oases for biological communities on the sea floor around hydrocarbon emission pathways.Microbial utilization of methane and other hydrocarbons yield products that fuel rich chemosynthetic communities at...Cold seeps are oases for biological communities on the sea floor around hydrocarbon emission pathways.Microbial utilization of methane and other hydrocarbons yield products that fuel rich chemosynthetic communities at these sites.One such site in the cold seep ecosystem of Krishna-Godavari basin(K-G basin)along the east coast of India,discovered in Feb 2018 at a depth of 1800 m was assessed for its bacterial diversity.The seep bacterial communities were dominated by phylum Proteobacteria(57%),Firmicutes(16%)and unclassified species belonging to the family Helicobacteriaceae.The surface sediments of the seep had maximum OTUs(operational taxonomic units)(2.27×10^(3))with a Shannon alpha diversity index of 8.06.In general,environmental parameters like total organic carbon(p<0.01),sulfate(p<0.001),sulfide(p<0.05)and methane(p<0.01)were responsible for shaping the bacterial community of the cold seep ecosystem in the K-G Basin.Environmental parameters play a significant role in changing the bacterial diversity richness between different cold seep environments in the oceans.展开更多
This paper presents a continuum manipulator inspired by the anatomical characteristics of the elephant trunk.Specifically,the manipulator mimics the conoid profile of the elephant trunk,which helps to enhance its stre...This paper presents a continuum manipulator inspired by the anatomical characteristics of the elephant trunk.Specifically,the manipulator mimics the conoid profile of the elephant trunk,which helps to enhance its strength.The design features two concentric parts:inner pneumatically actuated bellows and an outer tendon-driven helical spring.The tendons control the omnidirectional bending of the manipulator,while the fusion of the pneumatic bellows with the tendon-driven spring results in an antagonistic actuation mechanism that provides the manipulator with variable stiffness and extensibility.This paper presents a new design for extensible manipulator and analyzes its stiffness and motion characteristics.Experimental results are consistent with theoretical analysis,thereby demonstrating the validity of the theoretical approach and the versatile practical mechanical properties of the continuum manipulator.The impressive extensibility and variable stiffness of the manipulator were further demonstrated by performing a pin-hole assembly task.展开更多
Application of variable speed limits(VSL)is gradually increasingly implemented especially on highways.As a result of conducted studies and implementations,it is observed that the variable speed limits have reduced the...Application of variable speed limits(VSL)is gradually increasingly implemented especially on highways.As a result of conducted studies and implementations,it is observed that the variable speed limits have reduced the number of car accidents as well as proved positive results in terms of delays and environmental factors.Purpose of this study is to develop an algorithm for VSL application that is considered to be applied on Istanbul D100 highway and to assess the effects of application.Algorithm that is developed for VSL is a different VSL algorithm and compared with the constant speed system.According to obtained results,when the proposed system is compared to current system,it is observed that the number of delays and average stops are reduced%30 and%40 respectively and also emissions reduced at the rate of%12.展开更多
Predictive control(PC)is an advanced control algorithm,which is widely used in industrial process control.Among them,model-based predictive control(MPC)is an important branch of predictive control.Its basic principle ...Predictive control(PC)is an advanced control algorithm,which is widely used in industrial process control.Among them,model-based predictive control(MPC)is an important branch of predictive control.Its basic principle is to use the system model to predict future behavior and determine the current control action by optimizing the objective function.Based on the algorithm combined with three different sections using deep learning technology to identify vehicles and output the optimal speed limit,to achieve the effect of traffic flow optimization.展开更多
基金Sponsored by the Specialized Research Fund for the Doctoral Program of Higher Education(Grant No.20102302120032)the Open Foundation of Key Laboratory of Advanced Composites in Special Environmentsthe Natural Scientific Research Innovation Foundation in Harbin Institute of Technology(Grant No.HIT.NSRIF.2012028)
文摘A variable camber wing driven by pneumatic artificial muscles is developed in this paper. Firstly, the experimental setup to measure the static output force of pneumatic artificial muscle is designed and the relationship between the static output force and the air pressure is investigated. Experimental results show that the static output force of pneumatic artificial muscle decreases nonlinearly with the increase of contraction ratio. Secondly, the model of variable camber wing driven by pneumatic artificial muscles is manufactured to validate the variable camber concept. Finally, wind tunnel tests are conducted in the low speed wind tunnel. It is found that the wing camber increases with the increase of air pressure. When the air pressure of PAMs is 0.4 MPa and 0.5 MPa, the tip displacement of the trailing-edge is 3 mm and 5 mm, respectively. The lift of aerofoil with flexible trailing-edge increases by 87% at AOA of 5°.
文摘In this paper,we establish some strong laws of large numbers,which are for nonindependent random variables under the framework of sublinear expectations.One of our main results is for blockwise m-dependent random variables,and another is for sub-orthogonal random variables.Both extend the strong law of large numbers for independent random variables under sublinear expectations to the non-independent case.
基金Supported by China Postdoctoral Science Foundation (Grant No 20080440888)
文摘The method for analyzing the deformation of flexible skin under the air loads was developed based on the panel method and finite element method.The deformation of flexible skin under air pressures and effects of the local deformation on the aerodynamic characteristics were discussed.Numerical results show that the flexible skin on the upper surface of trailing-edge will bubble under the air loads and the bubble has a powerful effect on the aerodynamic pressure near the surface of local deforma-tion.Then the stiffness requirements for flexible skin of variable trailing-edge were given by using the Jacobs rule,i.e.,the maximum displacement of skin is not greater than 0.1% of wing chord.Results show that the in-plane stiffness can be reduced by increasing the ratio of bending stiffness to in-plane stiffness.Although the deformation of flexible skin increases with the in-plane stiffness decreasing,it depends on the bending stiffness.When the bending stiffness exceeds critical value,the deformation of flexible skin only depends on the bending stiffness and has nothing to do with the in-plane stiffness.The conclusions can be used for the structural design of flexible skin.
文摘Trailing-edge flap is traditionally used to improve the takeoff and landing aerodynamic performance of aircraft.In order to improve flight efficiency during takeoff,cruise and landing states,the flexible variable camber trailing-edge flap is introduced,capable of changing its shape smoothly from 50% flap chord to the rear of the flap.Using a numerical simulation method for the case of the GA(W)-2 airfoil,the multi-objective optimization of the overlap,gap,deflection angle,and bending angle of the flap under takeoff and landing configurations is studied.The optimization results show that under takeoff configuration,the variable camber trailing-edge flap can increase lift coefficient by about 8% and lift-to-drag ratio by about 7% compared with the traditional flap at a takeoff angle of 8°.Under landing configuration,the flap can improve the lift coefficient at a stall angle of attack about 1.3%.Under cruise state,the flap helps to improve the lift-todrag ratio over a wide range of lift coefficients,and the maximum increment is about 30%.Finally,a corrugated structure–eccentric beam combination bending mechanism is introduced in this paper to bend the flap by rotating the eccentric beam.
基金supported by the National Natural Science Foundation of China(No.51905123)Major Scientific and Technological Innovation Program of Shandong Province,China(Nos.2020CXGC010303,2022ZLGX04)Key R&D Programme of Shandong Province,China(No.2022JMRH0308).
文摘An internal state variable(ISV)model was established according to the experimental results of hot plane strain compression(PSC)to predict the microstructure evolution during hot spinning of ZK61 alloy.The effects of the internal variables were considered in this ISV model,and the parameters were optimized by genetic algorithm.After validation,the ISV model was used to simulate the evolution of grain size(GS)and dynamic recrystallization(DRX)fraction during hot spinning via Abaqus and its subroutine Vumat.By comparing the simulated results with the experimental results,the application of the ISV model was proven to be reliable.Meanwhile,the strength of the thin-walled spun ZK61 tube increased from 303 to 334 MPa due to grain refinement by DRX and texture strengthening.Besides,some ultrafine grains(0.5μm)that played an important role in mechanical properties were formed due to the proliferation,movement,and entanglement of dislocations during the spinning process.
文摘In order to solve the problem of the variable coefficient ordinary differen-tial equation on the bounded domain,the Lagrange interpolation method is used to approximate the exact solution of the equation,and the error between the numerical solution and the exact solution is obtained,and then compared with the error formed by the difference method,it is concluded that the Lagrange interpolation method is more effective in solving the variable coefficient ordinary differential equation.
基金supported by the National Key R&D Program of China(No.2021YFB0301200)National Natural Science Foundation of China(No.62025208).
文摘Large-scale Language Models(LLMs)have achieved significant breakthroughs in Natural Language Processing(NLP),driven by the pre-training and fine-tuning paradigm.While this approach allows models to specialize in specific tasks with reduced training costs,the substantial memory requirements during fine-tuning present a barrier to broader deployment.Parameter-Efficient Fine-Tuning(PEFT)techniques,such as Low-Rank Adaptation(LoRA),and parameter quantization methods have emerged as solutions to address these challenges by optimizing memory usage and computational efficiency.Among these,QLoRA,which combines PEFT and quantization,has demonstrated notable success in reducing memory footprints during fine-tuning,prompting the development of various QLoRA variants.Despite these advancements,the quantitative impact of key variables on the fine-tuning performance of quantized LLMs remains underexplored.This study presents a comprehensive analysis of these key variables,focusing on their influence across different layer types and depths within LLM architectures.Our investigation uncovers several critical findings:(1)Larger layers,such as MLP layers,can maintain performance despite reductions in adapter rank,while smaller layers,like self-attention layers,aremore sensitive to such changes;(2)The effectiveness of balancing factors depends more on specific values rather than layer type or depth;(3)In quantization-aware fine-tuning,larger layers can effectively utilize smaller adapters,whereas smaller layers struggle to do so.These insights suggest that layer type is a more significant determinant of fine-tuning success than layer depth when optimizing quantized LLMs.Moreover,for the same discount of trainable parameters,reducing the trainable parameters in a larger layer is more effective in preserving fine-tuning accuracy than in a smaller one.This study provides valuable guidance for more efficient fine-tuning strategies and opens avenues for further research into optimizing LLM fine-tuning in resource-constrained environments.
基金supported by the National Natural Science Foundation of China(Grant No.11971486)。
文摘We consider a single server constant retrial queue,in which a state-dependent service policy is used to control the service rate.Customer arrival follows Poisson process,while service time and retrial time are exponential distributions.Whenever the server is available,it admits the retrial customers into service based on a first-come first-served rule.The service rate adjusts in real-time based on the retrial queue length.An iterative algorithm is proposed to numerically solve the personal optimal problem in the fully observable scenario.Furthermore,we investigate the impact of parameters on the social optimal threshold.The effectiveness of the results is illustrated by two examples.
基金supported by a Grant-in-Aid for Scientific Research of KAKENHI,Japan Society for the Promotion of Science(Grant Nos.23H01373 and 23K26068)support from the Japanese Government MEXT scholarship and the Excellent International Student Scholarship provided by Chiba University。
文摘Owls exhibit remarkably silent flight,largely attributed to trailing-edge(TE)serrations on their wings.Inspired by this biological adaptation,TE serrations have become promising passive-noise-control strategies for aerodynamic devices,including drones and wind turbines.However,conventional designs typically feature single-scale geometries—Such as sawtooth or sinusoidal serrations—that fail to replicate the owl’s inherently dual-scale morphology:Macro-scale waviness formed by feather tips combined with micro-scale morphology.Here,we introduce and evaluate a hybrid TE serration design that incorporates both macro-scale wave patterns and micro-scale fringe-like elements to closely emulate the owl wing structure.Using large-eddy simulations coupled with the Ffowcs Williams-Hawkings acoustic analogy,we assess three configurations:A smooth baseline,a conventional wavy serration,and the proposed hybrid serration.Our results indicate that the hybrid configuration achieves an overall noise reduction of about 12 dB relative to the smooth baseline,surpassing the conventional wavy configuration by approximately 2.5 dB,while preserving aerodynamic performance as measured by lift-to-drag ratio.Flow-field analyses further reveal that dual-scale serrations effectively suppress TE pressure fluctuations,highlighting a key aeroacoustic advantage of the owl-inspired hybrid approach.These insights advance our understanding of bioinspired noisecontrol mechanisms and provide practical guidelines for designing quieter aerodynamic systems.
基金supports for this research were provided by the National Natural Science Foundation of China(No.12272301,12002278,U1906233)the Guangdong Basic and Applied Basic Research Foundation,China(Nos.2023A1515011970,2024A1515010256)+1 种基金the Dalian City Supports Innovation and Entrepreneurship Projects for High-Level Talents,China(2021RD16)the Key R&D Project of CSCEC,China(No.CSCEC-2020-Z-4).
文摘Fiber-reinforced composites are an ideal material for the lightweight design of aerospace structures. Especially in recent years, with the rapid development of composite additive manufacturing technology, the design optimization of variable stiffness of fiber-reinforced composite laminates has attracted widespread attention from scholars and industry. In these aerospace composite structures, numerous cutout panels and shells serve as access points for maintaining electrical, fuel, and hydraulic systems. The traditional fiber-reinforced composite laminate subtractive drilling manufacturing inevitably faces the problems of interlayer delamination, fiber fracture, and burr of the laminate. Continuous fiber additive manufacturing technology offers the potential for integrated design optimization and manufacturing with high structural performance. Considering the integration of design and manufacturability in continuous fiber additive manufacturing, the paper proposes linear and nonlinear filtering strategies based on the Normal Distribution Fiber Optimization (NDFO) material interpolation scheme to overcome the challenge of discrete fiber optimization results, which are difficult to apply directly to continuous fiber additive manufacturing. With minimizing structural compliance as the objective function, the proposed approach provides a strategy to achieve continuity of discrete fiber paths in the variable stiffness design optimization of composite laminates with regular and irregular holes. In the variable stiffness design optimization model, the number of candidate fiber laying angles in the NDFO material interpolation scheme is considered as design variable. The sensitivity information of structural compliance with respect to the number of candidate fiber laying angles is obtained using the analytical sensitivity analysis method. Based on the proposed variable stiffness design optimization method for complex perforated composite laminates, the numerical examples consider the variable stiffness design optimization of typical non-perforated and perforated composite laminates with circular, square, and irregular holes, and systematically discuss the number of candidate discrete fiber laying angles, discrete fiber continuous filtering strategies, and filter radius on structural compliance, continuity, and manufacturability. The optimized discrete fiber angles of variable stiffness laminates are converted into continuous fiber laying paths using a streamlined process for continuous fiber additive manufacturing. Meanwhile, the optimized non-perforated and perforated MBB beams after discrete fiber continuous treatment, are manufactured using continuous fiber co-extrusion additive manufacturing technology to verify the effectiveness of the variable stiffness fiber optimization framework proposed in this paper.
基金supported by Doctoral Scientific Research Starting Foundation of Jingdezhen Ceramic University(Grant No.102/01003002031)Re-accompanying Funding Project of Academic Achievements of Jingdezhen Ceramic University(Grant Nos.215/20506277,215/20506341)。
文摘The complete convergence for weighted sums of sequences of independent,identically distributed random variables under sublinear expectation space is studied.By moment inequality and truncation methods,we establish the equivalent conditions of complete convergence for weighted sums of sequences of independent,identically distributed random variables under sublinear expectation space.The results complement the corresponding results in probability space to those for sequences of independent,identically distributed random variables under sublinear expectation space.
基金supported by National Science and Technology Major Project,China(No.2017-IV-0007-0044)National Natural Science Foundation of China(No.52175142),National Natural Science Foundation of China(No.52305170)Natural Science Foundation of Sichuan Province,China(No.2022NSFSC1885)。
文摘With the application of 2.5D Woven Variable Thickness Composites(2.5DWVTC)in aviation and other fields,the issue of strength failure in this composite type has become a focal point.First,a three-step modeling approach is proposed to rapidly construct full-scale meso-finite element models for Outer Reduction Yarn Woven Composites(ORYWC)and Inner Reduction Yarn Woven Composites(IRYWC).Then,six independent damage variables are identified:yarn fiber tension/compression,yarn matrix tension/compression,and resin matrix tension/compression.These variables are utilized to establish the constitutive equation of woven composites,considering the coupling effects of microscopic damage.Finally,combined with the Hashin failure criterion and von Mises failure criterion,the strength prediction model is implemented in ANSYS using APDL language to simulate the strength failure process of 2.5DWVTC.The results show that the predicted stiffness and strength values of various parts of ORYWC and IRYWC are in good agreement with the relevant test results.
基金supported by the National Social Science Fundation(Grant No.21BTJ040)the Project of Outstanding Young People in University of Anhui Province(Grant Nos.2023AH020037,SLXY2024A001).
文摘In this paper,by utilizing the Marcinkiewicz-Zygmund inequality and Rosenthal-type inequality of negatively superadditive dependent(NSD)random arrays and truncated method,we investigate the complete f-moment convergence of NSD random variables.We establish and improve a general result on the complete f-moment convergence for Sung’s type randomly weighted sums of NSD random variables under some general assumptions.As an application,we show the complete consistency for the randomly weighted estimator in a nonparametric regression model based on NSD errors.
基金Supported by the National Natural Science Foundation of China(Grant No.11901131)。
文摘We investigate a class of elliptic equations with an L^(1)source in the framework of variable exponent spaces.A key characteristic of these equations is the coexistence of a degenerate coercivity term and a lower-order convection term.By employing innovative integralbased test functions,we derive the necessary a priori estimates.To prove the convergence of solutions to the degenerate coercivity problem,we adopt a method that combines monotonicity and truncation techniques.This approach allows us to demonstrate that the gradient sequences converge almost everywhere.
文摘In this paper we present certain bilinear estimates for commutators on Besov spaces with variable smoothness and integrability,and under no vanishing assumptions on the divergence of vector fields.Such commutator estimates are motivated by the study of well-posedness results for some models in incompressible fuid mechanics.
基金Supported by National Natural Science Foundation of China(Grant Nos.52225212,52272418,U22A20100)National Key Research and Development Program of China(Grant No.2022YFB2503302).
文摘The development of chassis active safety control technology has improved vehicle stability under extreme conditions.However,its cross-system and multi-functional characteristics make the controller difficult to achieve cooperative goals.In addition,the chassis system,which has high complexity,numerous subsystems,and strong coupling,will also lead to low computing efficiency and poor control effect of the controller.Therefore,this paper proposes a scenario-driven hybrid distributed model predictive control algorithm with variable control topology.This algorithm divides multiple stability regions based on the vehicle’s β−γ phase plane,forming a mapping relationship between the control structure and the vehicle’s state.A control input fusion mechanism within the transition domain is designed to mitigate the problems of system state oscillation and control input jitter caused by switching control structures.Then,a distributed state-space equation with state coupling and input coupling characteristics is constructed,and a weighted local agent cost function in quadratic programming is derived.Through cost coupling,local agents can coordinate global performance goals.Finally,through Simulink/CarSim joint simulation and hardware-in-the-loop(HIL)test,the proposed algorithm is validated to improve vehicle stability while ensuring trajectory tracking accuracy and has good applicability for multi-objective coordinated control.This paper combines the advantages of distributed MPC and decentralized MPC,achieving a balance between approximating the global optimal results and the solution’s efficiency.
文摘Cold seeps are oases for biological communities on the sea floor around hydrocarbon emission pathways.Microbial utilization of methane and other hydrocarbons yield products that fuel rich chemosynthetic communities at these sites.One such site in the cold seep ecosystem of Krishna-Godavari basin(K-G basin)along the east coast of India,discovered in Feb 2018 at a depth of 1800 m was assessed for its bacterial diversity.The seep bacterial communities were dominated by phylum Proteobacteria(57%),Firmicutes(16%)and unclassified species belonging to the family Helicobacteriaceae.The surface sediments of the seep had maximum OTUs(operational taxonomic units)(2.27×10^(3))with a Shannon alpha diversity index of 8.06.In general,environmental parameters like total organic carbon(p<0.01),sulfate(p<0.001),sulfide(p<0.05)and methane(p<0.01)were responsible for shaping the bacterial community of the cold seep ecosystem in the K-G Basin.Environmental parameters play a significant role in changing the bacterial diversity richness between different cold seep environments in the oceans.
基金supported by the National Key R&D Program of China(No.2018YFB1305400)the Major Research Plan of the National Natural Science Foundation of China(No.92048301)+1 种基金the National Natural Science Foundation of China(No.52025054)the Joint Research Fund between the National Natural Science Foundation of China(NSFC)and Shen Zhen(No.U1713201).
文摘This paper presents a continuum manipulator inspired by the anatomical characteristics of the elephant trunk.Specifically,the manipulator mimics the conoid profile of the elephant trunk,which helps to enhance its strength.The design features two concentric parts:inner pneumatically actuated bellows and an outer tendon-driven helical spring.The tendons control the omnidirectional bending of the manipulator,while the fusion of the pneumatic bellows with the tendon-driven spring results in an antagonistic actuation mechanism that provides the manipulator with variable stiffness and extensibility.This paper presents a new design for extensible manipulator and analyzes its stiffness and motion characteristics.Experimental results are consistent with theoretical analysis,thereby demonstrating the validity of the theoretical approach and the versatile practical mechanical properties of the continuum manipulator.The impressive extensibility and variable stiffness of the manipulator were further demonstrated by performing a pin-hole assembly task.
文摘Application of variable speed limits(VSL)is gradually increasingly implemented especially on highways.As a result of conducted studies and implementations,it is observed that the variable speed limits have reduced the number of car accidents as well as proved positive results in terms of delays and environmental factors.Purpose of this study is to develop an algorithm for VSL application that is considered to be applied on Istanbul D100 highway and to assess the effects of application.Algorithm that is developed for VSL is a different VSL algorithm and compared with the constant speed system.According to obtained results,when the proposed system is compared to current system,it is observed that the number of delays and average stops are reduced%30 and%40 respectively and also emissions reduced at the rate of%12.
文摘Predictive control(PC)is an advanced control algorithm,which is widely used in industrial process control.Among them,model-based predictive control(MPC)is an important branch of predictive control.Its basic principle is to use the system model to predict future behavior and determine the current control action by optimizing the objective function.Based on the algorithm combined with three different sections using deep learning technology to identify vehicles and output the optimal speed limit,to achieve the effect of traffic flow optimization.