The development of chassis active safety control technology has improved vehicle stability under extreme conditions.However,its cross-system and multi-functional characteristics make the controller difficult to achiev...The development of chassis active safety control technology has improved vehicle stability under extreme conditions.However,its cross-system and multi-functional characteristics make the controller difficult to achieve cooperative goals.In addition,the chassis system,which has high complexity,numerous subsystems,and strong coupling,will also lead to low computing efficiency and poor control effect of the controller.Therefore,this paper proposes a scenario-driven hybrid distributed model predictive control algorithm with variable control topology.This algorithm divides multiple stability regions based on the vehicle’s β−γ phase plane,forming a mapping relationship between the control structure and the vehicle’s state.A control input fusion mechanism within the transition domain is designed to mitigate the problems of system state oscillation and control input jitter caused by switching control structures.Then,a distributed state-space equation with state coupling and input coupling characteristics is constructed,and a weighted local agent cost function in quadratic programming is derived.Through cost coupling,local agents can coordinate global performance goals.Finally,through Simulink/CarSim joint simulation and hardware-in-the-loop(HIL)test,the proposed algorithm is validated to improve vehicle stability while ensuring trajectory tracking accuracy and has good applicability for multi-objective coordinated control.This paper combines the advantages of distributed MPC and decentralized MPC,achieving a balance between approximating the global optimal results and the solution’s efficiency.展开更多
In light of the intricate and volatile nature of battlefield environments,unmanned aerial vehicle(UAV)swarms have become a critical asset in contemporary military operations.The autonomous obstacle avoidance capabilit...In light of the intricate and volatile nature of battlefield environments,unmanned aerial vehicle(UAV)swarms have become a critical asset in contemporary military operations.The autonomous obstacle avoidance capabilities of UAV swarms are crucial for enhancing their operational effectiveness and survivability in complex battlefield conditions.Consequently,this technology has garnered significant attention from researchers globally,positioning it as a key area of advanced military technology.In response to the diverse characteristics of obstacles in combat environments,a cooperative obstacle avoidance strategy for UAV swarms on the basis of an improved artificial potential field(APF)method and a variable topology structure is proposed in this study.By considering the properties of static and dynamic obstacles on the battlefield,the proposed strategy models the flight space with obstacles as being segmented into multiple smaller navigable regions between these obstacles.To address the limitations of the traditional APF method,this study introduces velocity adaptation components,angle factors,and auxiliary traction forces to optimize the repulsive force component of the traditional APF method.Additionally,combining this approach with a coalition-based variable topology formation reconfiguration algorithm,the strategy realizes autonomous obstacle avoidance for UAV swarms in battlefield obstacle environments.This method not only resolves the common issue of local minima in traditional APF obstacle avoidance techniques but also ensures effective obstacle avoidance by UAV swarms when large obstacles are encountered.The results of simulation experiments demonstrate the feasibility and performance of the proposed strategy.展开更多
Continuumtopology optimization considering the vibration response is of great value in the engineering structure design.The aimof this studyis toaddress the topological designoptimizationof harmonic excitationstructur...Continuumtopology optimization considering the vibration response is of great value in the engineering structure design.The aimof this studyis toaddress the topological designoptimizationof harmonic excitationstructureswith minimumlength scale control to facilitate structuralmanufacturing.Astructural topology design based on discrete variables is proposed to avoid localized vibration modes,gray regions and fuzzy boundaries in harmonic excitation topology optimization.The topological design model and sensitivity formulation are derived.The requirement of minimum size control is transformed into a geometric constraint using the discrete variables.Consequently,thin bars,small holes,and sharp corners,which are not conducive to the manufacturing process,can be eliminated from the design results.The present optimization design can efficiently achieve a 0–1 topology configuration with a significantly improved resonance frequency in a wide range of excitation frequencies.Additionally,the optimal solution for harmonic excitation topology optimization is not necessarily symmetric when the load and support are symmetric,which is a distinct difference fromthe static optimization design.Hence,one-half of the design domain cannot be selected according to the load and support symmetry.Numerical examples are presented to demonstrate the effectiveness of the discrete variable design for excitation frequency topology optimization,and to improve the design manufacturability.展开更多
Strengthened directivity with higher-order side lobes can be generated by the transducer with a larger radius at a higher frequency. The multi-annular pressure distributions are displayed in the cross-section of the a...Strengthened directivity with higher-order side lobes can be generated by the transducer with a larger radius at a higher frequency. The multi-annular pressure distributions are displayed in the cross-section of the acoustic vortices(AVs)which are formed by side lobes. In the near field, particles can be trapped in the valley region between the two annuli of the pressure peak, and cannot be moved to the vortex center. In this paper, a trapping method based on a sector transducer array is proposed, which is characterized by the continuously variable topological charge(CVTC). This acoustic field can not only enlarge the range of particle trapping but also improve the aggregation degree of the trapped particles. In the experiments, polyethylene particles with a diameter of 0.2 mm are trapped into the multi-annular valleys by the AV with a fixed topological charge. Nevertheless, by applying the CVTC, particles outside the radius of the AV can cross the pressure peak successfully and move to the vortex center. Theoretical studies are also verified by the experimental particles trapping using the AV with the continuous variation of three topological charges, and suggest the potential application of large-scale particle trapping in biomedical engineering.展开更多
Metamorphic mechanisms have attracted considerable attention owing to their capability to switch their topology to adapt to different operational tasks.One feature of topological change is the re-contact of different ...Metamorphic mechanisms have attracted considerable attention owing to their capability to switch their topology to adapt to different operational tasks.One feature of topological change is the re-contact of different bodies,which inevitably causes collisions affecting operation accuracy and service life.Consequently,in this study,a collision incidence matrix was introduced to describe the topology of a system involved in collisions,and a method for reducing the closed-loop system to an open-loop system was proposed.The complex movement of the metamorphic mechanism in a changing topology was classified into two different running stages of the source metamorphic mechanism.Based on the relative coordinate method,dynamic modeling of the source metamorphic mechanism considering the impact effects was conducted.Combining the classical collision theory and Newton–Euler equation,the generated impact impulse and the motion after collision were determined.Subsequently,a dynamic analytical method for the full configuration of metamorphic mechanisms was proposed to reflect the changes in the topological structure in the dynamic model.Finally,two typical metamorphic mechanisms used in packaging and spinning were considered as examples to verify the correctness and effectiveness of the proposed method,and their impact characteristics during configuration transformation were analyzed.The proposed analytical method of internal impact for a variable topology process provides effective theoretical guidance for the stability analysis of configuration transformation and structural design aimed at minimizing impacts.展开更多
A new exist-null combined model is proposed for the structural topology optimization. The model is applied to the topology optimization of the truss with stress constraints. Satisfactory computational result can be ob...A new exist-null combined model is proposed for the structural topology optimization. The model is applied to the topology optimization of the truss with stress constraints. Satisfactory computational result can be obtained with more rapid and more stable convergence as compared with the cross-sectional optimization. This work also shows that the presence of independent and continuous topological variable motivates the research of structural topology optimization.展开更多
For rigid-flexible coupling multi-body with variable topology,such as the system of internally carried air-launched or heavy cargo airdrop,in order to construct a dynamic model with unified form,avoid redundancy in th...For rigid-flexible coupling multi-body with variable topology,such as the system of internally carried air-launched or heavy cargo airdrop,in order to construct a dynamic model with unified form,avoid redundancy in the modeling process and make the solution independent,a method based on the equivalent rigidization model was proposed.It divides a system into independent subsystems by cutting off the joints,of which types are changed with the operation process of the system.And models of different subsystems can be constructed via selecting suitable modeling methods.Subsystem models with flexible bodies are on the basis of the equivalent rigidization model which replaces the flexible bodies with the virtual rigid bodies.And the solution for sanction,which is based on the constraints force algorithm(CFA)and vector mechanics,can be independent on the state equations.The internally carried air-launched system was taken as an example for verifying validity and feasibility of the method and theory.The dynamic model of aircraft-rocket-parachute system in the entire phase was constructed.Comparing the modeling method with the others,the modeling process was programmed;and form of the model is unified and simple.The model,method and theory can be used to analyze other similar systems such as heavy cargo airdrop system and capsule parachute recovery system.展开更多
The high penetration and uncertainty of distributed energies force the upgrade of volt-var control(VVC) to smooth the voltage and var fluctuations faster. Traditional mathematical or heuristic algorithms are increasin...The high penetration and uncertainty of distributed energies force the upgrade of volt-var control(VVC) to smooth the voltage and var fluctuations faster. Traditional mathematical or heuristic algorithms are increasingly incompetent for this task because of the slow online calculation speed. Deep reinforcement learning(DRL) has recently been recognized as an effective alternative as it transfers the computational pressure to the off-line training and the online calculation timescale reaches milliseconds. However, its slow offline training speed still limits its application to VVC. To overcome this issue, this paper proposes a simplified DRL method that simplifies and improves the training operations in DRL, avoiding invalid explorations and slow reward calculation speed. Given the problem that the DRL network parameters of original topology are not applicable to the other new topologies, side-tuning transfer learning(TL) is introduced to reduce the number of parameters needed to be updated in the TL process. Test results based on IEEE 30-bus and 118-bus systems prove the correctness and rapidity of the proposed method, as well as their strong applicability for large-scale control variables.展开更多
基金Supported by National Natural Science Foundation of China(Grant Nos.52225212,52272418,U22A20100)National Key Research and Development Program of China(Grant No.2022YFB2503302).
文摘The development of chassis active safety control technology has improved vehicle stability under extreme conditions.However,its cross-system and multi-functional characteristics make the controller difficult to achieve cooperative goals.In addition,the chassis system,which has high complexity,numerous subsystems,and strong coupling,will also lead to low computing efficiency and poor control effect of the controller.Therefore,this paper proposes a scenario-driven hybrid distributed model predictive control algorithm with variable control topology.This algorithm divides multiple stability regions based on the vehicle’s β−γ phase plane,forming a mapping relationship between the control structure and the vehicle’s state.A control input fusion mechanism within the transition domain is designed to mitigate the problems of system state oscillation and control input jitter caused by switching control structures.Then,a distributed state-space equation with state coupling and input coupling characteristics is constructed,and a weighted local agent cost function in quadratic programming is derived.Through cost coupling,local agents can coordinate global performance goals.Finally,through Simulink/CarSim joint simulation and hardware-in-the-loop(HIL)test,the proposed algorithm is validated to improve vehicle stability while ensuring trajectory tracking accuracy and has good applicability for multi-objective coordinated control.This paper combines the advantages of distributed MPC and decentralized MPC,achieving a balance between approximating the global optimal results and the solution’s efficiency.
基金supported by the National Natural Science Foundation of China(Grant No.72471204)。
文摘In light of the intricate and volatile nature of battlefield environments,unmanned aerial vehicle(UAV)swarms have become a critical asset in contemporary military operations.The autonomous obstacle avoidance capabilities of UAV swarms are crucial for enhancing their operational effectiveness and survivability in complex battlefield conditions.Consequently,this technology has garnered significant attention from researchers globally,positioning it as a key area of advanced military technology.In response to the diverse characteristics of obstacles in combat environments,a cooperative obstacle avoidance strategy for UAV swarms on the basis of an improved artificial potential field(APF)method and a variable topology structure is proposed in this study.By considering the properties of static and dynamic obstacles on the battlefield,the proposed strategy models the flight space with obstacles as being segmented into multiple smaller navigable regions between these obstacles.To address the limitations of the traditional APF method,this study introduces velocity adaptation components,angle factors,and auxiliary traction forces to optimize the repulsive force component of the traditional APF method.Additionally,combining this approach with a coalition-based variable topology formation reconfiguration algorithm,the strategy realizes autonomous obstacle avoidance for UAV swarms in battlefield obstacle environments.This method not only resolves the common issue of local minima in traditional APF obstacle avoidance techniques but also ensures effective obstacle avoidance by UAV swarms when large obstacles are encountered.The results of simulation experiments demonstrate the feasibility and performance of the proposed strategy.
基金supported by the National Natural Science Foundation of China (12002218 and 12032008)the Youth Foundation of Education Department of Liaoning Province (Grant No.JYT19034).
文摘Continuumtopology optimization considering the vibration response is of great value in the engineering structure design.The aimof this studyis toaddress the topological designoptimizationof harmonic excitationstructureswith minimumlength scale control to facilitate structuralmanufacturing.Astructural topology design based on discrete variables is proposed to avoid localized vibration modes,gray regions and fuzzy boundaries in harmonic excitation topology optimization.The topological design model and sensitivity formulation are derived.The requirement of minimum size control is transformed into a geometric constraint using the discrete variables.Consequently,thin bars,small holes,and sharp corners,which are not conducive to the manufacturing process,can be eliminated from the design results.The present optimization design can efficiently achieve a 0–1 topology configuration with a significantly improved resonance frequency in a wide range of excitation frequencies.Additionally,the optimal solution for harmonic excitation topology optimization is not necessarily symmetric when the load and support are symmetric,which is a distinct difference fromthe static optimization design.Hence,one-half of the design domain cannot be selected according to the load and support symmetry.Numerical examples are presented to demonstrate the effectiveness of the discrete variable design for excitation frequency topology optimization,and to improve the design manufacturability.
基金Project supported by the National Key R&D Program of China(Grant No.2023YFE0201900)。
文摘Strengthened directivity with higher-order side lobes can be generated by the transducer with a larger radius at a higher frequency. The multi-annular pressure distributions are displayed in the cross-section of the acoustic vortices(AVs)which are formed by side lobes. In the near field, particles can be trapped in the valley region between the two annuli of the pressure peak, and cannot be moved to the vortex center. In this paper, a trapping method based on a sector transducer array is proposed, which is characterized by the continuously variable topological charge(CVTC). This acoustic field can not only enlarge the range of particle trapping but also improve the aggregation degree of the trapped particles. In the experiments, polyethylene particles with a diameter of 0.2 mm are trapped into the multi-annular valleys by the AV with a fixed topological charge. Nevertheless, by applying the CVTC, particles outside the radius of the AV can cross the pressure peak successfully and move to the vortex center. Theoretical studies are also verified by the experimental particles trapping using the AV with the continuous variation of three topological charges, and suggest the potential application of large-scale particle trapping in biomedical engineering.
基金Supported by National Natural Science Foundation of China(Grant Nos.52005368,51475330)。
文摘Metamorphic mechanisms have attracted considerable attention owing to their capability to switch their topology to adapt to different operational tasks.One feature of topological change is the re-contact of different bodies,which inevitably causes collisions affecting operation accuracy and service life.Consequently,in this study,a collision incidence matrix was introduced to describe the topology of a system involved in collisions,and a method for reducing the closed-loop system to an open-loop system was proposed.The complex movement of the metamorphic mechanism in a changing topology was classified into two different running stages of the source metamorphic mechanism.Based on the relative coordinate method,dynamic modeling of the source metamorphic mechanism considering the impact effects was conducted.Combining the classical collision theory and Newton–Euler equation,the generated impact impulse and the motion after collision were determined.Subsequently,a dynamic analytical method for the full configuration of metamorphic mechanisms was proposed to reflect the changes in the topological structure in the dynamic model.Finally,two typical metamorphic mechanisms used in packaging and spinning were considered as examples to verify the correctness and effectiveness of the proposed method,and their impact characteristics during configuration transformation were analyzed.The proposed analytical method of internal impact for a variable topology process provides effective theoretical guidance for the stability analysis of configuration transformation and structural design aimed at minimizing impacts.
基金The project supported by the State Key Laboratory for Structural Analysis of Industrial Equipment,Dalian University of Technology.
文摘A new exist-null combined model is proposed for the structural topology optimization. The model is applied to the topology optimization of the truss with stress constraints. Satisfactory computational result can be obtained with more rapid and more stable convergence as compared with the cross-sectional optimization. This work also shows that the presence of independent and continuous topological variable motivates the research of structural topology optimization.
文摘For rigid-flexible coupling multi-body with variable topology,such as the system of internally carried air-launched or heavy cargo airdrop,in order to construct a dynamic model with unified form,avoid redundancy in the modeling process and make the solution independent,a method based on the equivalent rigidization model was proposed.It divides a system into independent subsystems by cutting off the joints,of which types are changed with the operation process of the system.And models of different subsystems can be constructed via selecting suitable modeling methods.Subsystem models with flexible bodies are on the basis of the equivalent rigidization model which replaces the flexible bodies with the virtual rigid bodies.And the solution for sanction,which is based on the constraints force algorithm(CFA)and vector mechanics,can be independent on the state equations.The internally carried air-launched system was taken as an example for verifying validity and feasibility of the method and theory.The dynamic model of aircraft-rocket-parachute system in the entire phase was constructed.Comparing the modeling method with the others,the modeling process was programmed;and form of the model is unified and simple.The model,method and theory can be used to analyze other similar systems such as heavy cargo airdrop system and capsule parachute recovery system.
文摘The high penetration and uncertainty of distributed energies force the upgrade of volt-var control(VVC) to smooth the voltage and var fluctuations faster. Traditional mathematical or heuristic algorithms are increasingly incompetent for this task because of the slow online calculation speed. Deep reinforcement learning(DRL) has recently been recognized as an effective alternative as it transfers the computational pressure to the off-line training and the online calculation timescale reaches milliseconds. However, its slow offline training speed still limits its application to VVC. To overcome this issue, this paper proposes a simplified DRL method that simplifies and improves the training operations in DRL, avoiding invalid explorations and slow reward calculation speed. Given the problem that the DRL network parameters of original topology are not applicable to the other new topologies, side-tuning transfer learning(TL) is introduced to reduce the number of parameters needed to be updated in the TL process. Test results based on IEEE 30-bus and 118-bus systems prove the correctness and rapidity of the proposed method, as well as their strong applicability for large-scale control variables.