Variable transmission ratio racks show great potential in rice transplanters as a key component of variable transmission ratio steering to balance steering portability and sensitivity.The objective of this study was t...Variable transmission ratio racks show great potential in rice transplanters as a key component of variable transmission ratio steering to balance steering portability and sensitivity.The objective of this study was to develop a novel geometrical design method to achieve quick,high-quality modeling of the free curvilinear tooth profile of a variable transmission ratio rack.First,a discrete envelope motion 3D model was established between the pinion-sector and the variable transmission ratio rack blank based on the mapping relationship between the rotation angle of the pinion-sector and the displacement of the rack,according to the variable transmission ratio function.Based on the loop Boolean subtraction operation,which removed the pinion-sector from the rack blank during all moments of the discrete motion process,the final complex changing tooth shape of the variable transmission ratio rack was enveloped.Then,since Boolean cutting residues made the variable ratio tooth surface fluctuant and eventually affected the precision of the model,this study proposed a modification method for establishing a smooth and continuous tooth profile.First,a novel fitting algorithm used approximate variable ratio tooth profile points extracted from the Boolean cutting marks and generated a series of variable ratio tooth profiles by utilizing B-spline with different orders.Next,based on a transmission stability simulation,the variable ratio tooth profile with optimal dynamic performance was selected as the final design.Finally,tests contrasting the transmission stability of the machining samples of the initial variable ratio tooth profile and the final variable ratio tooth profile were conducted.The results indicated that the final variable ratio tooth profile is more effective than the initial variable ratio tooth profile.Therefore,the proposed variable ratio tooth profile modeling and modification method for eliminating Boolean cutting residues and improving surface accuracy is proved to be feasible.展开更多
When the noncircular gear pair is applied to the continuously variable transmission (CVT) with gear, the transmission ratio function is discontinuous. In accordance with this unique characteristic, a new approach to...When the noncircular gear pair is applied to the continuously variable transmission (CVT) with gear, the transmission ratio function is discontinuous. In accordance with this unique characteristic, a new approach to design and analyze noncircular gears with discontinuous pitch curve is proposed. The design courses of various noncircular gear pairs with discontinuous pitch curve are unified based on the numerical algorithm of spline fitting and "fairing boundary condition". According to the particularity of discontinuous pitch curve, the rules and procedures for teeth distribution are recommended. It is explained in detail why the undercut is formed and how to manage the undercut based on meshing principle.In addition, the calculation formulas for each tooth profile segment are also derived. If the tooth profile data are calculated, the measurement and the incision process for noncircular gear can be conducted and the CAD simulation can be achieved easily. To ensure the continuity of the transmission, the transmission interference of the tooth which is located at the pitch curve joint point is managed by utilizing Bezier curve with CAD software. And the contact ratio of gear pair is obtained. The case study shows that this approach is successful and opens up a new way for the design of noncircular gear.展开更多
基金This work was financially supported by the Shandong Provincial Key Research and Development Program(Grant No.2018GNC112017)Shandong Agricultural Machinery R&D Innovation Project Sub-project(Grant No.2018YF001-02)+3 种基金the Shandong Provincial Key Laboratory of Horticultural Machinery and Equipment(Grant No.YYJX-2019-08)the Funds of Shandong“Double Tops”Program(Grant No.SYL2017XTTD14)the Fundamental Research Funds for the Central Universities(Grant No.2662020GXPY016)the Hubei Provincial Natural Science Foundation of China(Grant No.2018CFB231).
文摘Variable transmission ratio racks show great potential in rice transplanters as a key component of variable transmission ratio steering to balance steering portability and sensitivity.The objective of this study was to develop a novel geometrical design method to achieve quick,high-quality modeling of the free curvilinear tooth profile of a variable transmission ratio rack.First,a discrete envelope motion 3D model was established between the pinion-sector and the variable transmission ratio rack blank based on the mapping relationship between the rotation angle of the pinion-sector and the displacement of the rack,according to the variable transmission ratio function.Based on the loop Boolean subtraction operation,which removed the pinion-sector from the rack blank during all moments of the discrete motion process,the final complex changing tooth shape of the variable transmission ratio rack was enveloped.Then,since Boolean cutting residues made the variable ratio tooth surface fluctuant and eventually affected the precision of the model,this study proposed a modification method for establishing a smooth and continuous tooth profile.First,a novel fitting algorithm used approximate variable ratio tooth profile points extracted from the Boolean cutting marks and generated a series of variable ratio tooth profiles by utilizing B-spline with different orders.Next,based on a transmission stability simulation,the variable ratio tooth profile with optimal dynamic performance was selected as the final design.Finally,tests contrasting the transmission stability of the machining samples of the initial variable ratio tooth profile and the final variable ratio tooth profile were conducted.The results indicated that the final variable ratio tooth profile is more effective than the initial variable ratio tooth profile.Therefore,the proposed variable ratio tooth profile modeling and modification method for eliminating Boolean cutting residues and improving surface accuracy is proved to be feasible.
文摘When the noncircular gear pair is applied to the continuously variable transmission (CVT) with gear, the transmission ratio function is discontinuous. In accordance with this unique characteristic, a new approach to design and analyze noncircular gears with discontinuous pitch curve is proposed. The design courses of various noncircular gear pairs with discontinuous pitch curve are unified based on the numerical algorithm of spline fitting and "fairing boundary condition". According to the particularity of discontinuous pitch curve, the rules and procedures for teeth distribution are recommended. It is explained in detail why the undercut is formed and how to manage the undercut based on meshing principle.In addition, the calculation formulas for each tooth profile segment are also derived. If the tooth profile data are calculated, the measurement and the incision process for noncircular gear can be conducted and the CAD simulation can be achieved easily. To ensure the continuity of the transmission, the transmission interference of the tooth which is located at the pitch curve joint point is managed by utilizing Bezier curve with CAD software. And the contact ratio of gear pair is obtained. The case study shows that this approach is successful and opens up a new way for the design of noncircular gear.