期刊文献+
共找到21篇文章
< 1 2 >
每页显示 20 50 100
Slip flow and variable properties of viscoelastic fluid past a stretching surface embedded in a porous medium with heat generation 被引量:2
1
作者 Ahmed M.Megahed 《Journal of Central South University》 SCIE EI CAS CSCD 2016年第4期991-999,共9页
This study examines theoretically and computationally the non-Newtonian boundary layer flow and heat transfer for a viscoelastic fluid over a stretching continuous sheet embedded in a porous medium with variable fluid... This study examines theoretically and computationally the non-Newtonian boundary layer flow and heat transfer for a viscoelastic fluid over a stretching continuous sheet embedded in a porous medium with variable fluid properties, slip velocity, and internal heat generation/absorption. The flow in boundary layer is considered to be generated solely by the stretching of the sheet adjacent to porous medium with boundary wall slip condition. Highly nonlinear momentum and thermal boundary layer equations governing the flow and heat transfer are reduced to set of nonlinear ordinary differential equations by appropriate transformation. The resulting ODEs are successfully solved numerically with the help of shooting method. Graphical results are shown for non-dimensional velocities and temperature. The effects of heat generation/absorption parameter, the porous parameter, the viscoelastic parameter, velocity slip parameter, variable thermal conductivity and the Prandtl number on the flow and temperature profiles are presented. Moreover, the local skin-friction coefficient and Nusselt number are presented. Comparison of numerical results is made with the earlier published results under limiting cases. 展开更多
关键词 viscoelastic fluid variable fluid properties slip velocity
在线阅读 下载PDF
EFFECT OF FRACTIONAL ORDER PARAMETER ON THERMOELASTIC BEHAVIORS OF ELASTIC MEDIUM WITH VARIABLE PROPERTIES
2
作者 Yingze Wang Dong Liu +1 位作者 Qian Wang Jianzhong Zhou 《Acta Mechanica Solida Sinica》 SCIE EI CSCD 2015年第6期682-692,共11页
This paper is concerned with the thermoelastic behaviors of an elastic medium with variable thermal material properties. The problem is in the context of fractional order heat conduction. The governing equations with ... This paper is concerned with the thermoelastic behaviors of an elastic medium with variable thermal material properties. The problem is in the context of fractional order heat conduction. The governing equations with variable thermal properties were established by means of the fractional order calculus. The problem of a half-space formed of an elastic medium with variable thermal material properties was solved, and asymptotic solutions induced by a sudden temperature rise on the boundary were obtained by applying an asymptotic approach. The propagations of thermoelastic wave and thermal wave, as well as the distributions of displacement, temperature and stresses were obtained and plotted. Variations in the distributions with different values of fractional order parameter were discussed. The results were compared with those obtained from the case of constant material properties to evaluate the effects of variable material properties on thermoelastic behaviors. 展开更多
关键词 generalized thermoelasticity fractional order heat conduction variable thermal material properties asymptotic solution thermal shock
原文传递
Mathematical modeling for dynamic stability of sandwich beam with variable mechanical properties of core 被引量:3
3
作者 M.GRYGOROWICZ E.MAGNUCKA-BLANDZI 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2016年第10期1361-1374,共14页
The paper is devoted to mathematical modelling of static and dynamic stability of a simply supported three-layered beam with a metal foam core. Mechanical properties of the core vary along the vertical direction. The ... The paper is devoted to mathematical modelling of static and dynamic stability of a simply supported three-layered beam with a metal foam core. Mechanical properties of the core vary along the vertical direction. The field of displacements is for- mulated using the classical broken line hypothesis and the proposed nonlinear hypothesis that generalizes the classical one. Using both hypotheses, the strains are determined as well as the stresses of each layer. The kinetic energy, the elastic strain energy, and the work of load are also determined. The system of equations of motion is derived using Hamilton's principle. Finally, the system of three equations is reduced to one equation of motion, in particular, the Mathieu equation. The Bubnov-Galerkin method is used to solve the system of equations of motion, and the Runge-Kutta method is used to solve the second-order differential equation. Numerical calculations are done for the chosen family of beams. The critical loads, unstable regions, angular frequencies of the beam, and the static and dynamic equilibrium paths are calculated analytically and verified numerically. The results of this study are presented in the forms of figures and tables. 展开更多
关键词 mathematical modelling dynamic stability metal foam core with variable mechanical property static and dynamic equilibrium path angular frequency
在线阅读 下载PDF
Variable fluid properties and variable heat flux effects on the flow and heat transfer in a non-Newtonian Maxwell fluid over an unsteady stretching sheet with slip velocity 被引量:2
4
作者 Ahmed M. Megahed 《Chinese Physics B》 SCIE EI CAS CSCD 2013年第9期480-485,共6页
The effects of variable fluid properties and variable heat flux on the flow and heat transfer of a non-Newtonian Maxwell fluid over an unsteady stretching sheet in the presence of slip velocity have been studied. The ... The effects of variable fluid properties and variable heat flux on the flow and heat transfer of a non-Newtonian Maxwell fluid over an unsteady stretching sheet in the presence of slip velocity have been studied. The governing differential equations are transformed into a set of coupled non-linear ordinary differential equations and then solved with a numerical technique using appropriate boundary conditions for various physical parameters. The numerical solution for the governing non-linear boundary value problem is based on applying the fourth-order Runge-Kutta method coupled with the shooting technique over the entire range of physical parameters. The effects of various parameters like the viscosity parameter, thermal conductivity parameter, unsteadiness parameter, slip velocity parameter, the Deborah number, and the Prandtl number on the flow and temperature profiles as well as on the local skin-friction coefficient and the local Nusselt number are presented and discussed. Comparison of numerical results is made with the earlier published results under limiting cases. 展开更多
关键词 Maxwell fluid unsteady stretching sheet variable fluid properties variable heat flux
原文传递
THE EFFECT OF DUAL-PHASE-LAG MODEL ON REFLECTION OF THERMOELASTIC WAVES IN A SOLID HALF SPACE WITH VARIABLE MATERIAL PROPERTIES 被引量:2
5
作者 A.M.Zenkour D.S.Mashat A.E.Abouelregal 《Acta Mechanica Solida Sinica》 SCIE EI CSCD 2013年第6期659-670,共12页
The present article represents an analysis of reflection of P-wave and SV-wave on the boundary of an isotropic and homogeneous generalized thermoelastic half-space when the boundary is stress-free as well as isotherma... The present article represents an analysis of reflection of P-wave and SV-wave on the boundary of an isotropic and homogeneous generalized thermoelastic half-space when the boundary is stress-free as well as isothermal. The modulus of elasticity is taken as a linear function of reference temperature. The basic governing equations are applied under four theories of the generalized thermoelasticity: Lord-Shulman (L-S) theory with one relaxation time, Green-Naghdi (G-N) theory without energy dissipation and Tzou theory with dual-phase-lag (DPL), as well as the coupled thermoelasticity (CTE) theory. It is shown that there exist three plane waves, namely, a thermal wave, a P-wave and an SV-wave. The reflection from an isothermal stress-free surface is studied to obtain the reflection amplitude ratios of the reflected waves for the incidence of P- and SV-waves. The amplitude ratios variations with the angle of incident are shown graphically. Also the effects of reference temperature of the modulus of elasticity and dual-phase lags on the reflection amplitude ratios are discussed numerically. 展开更多
关键词 generalized thermoelasticity dual-phase-lag variable material properties reflection waves
原文传递
New friction factor and Nusselt number equations for laminar forced convection of liquid with variable properties 被引量:1
6
作者 ZHAO HouJian LI XiaoWei WU XinXin 《Science China(Technological Sciences)》 SCIE EI CAS CSCD 2018年第1期98-109,共12页
Friction factor and heat transfer coefficient of liquid flow with variable properties can significantly differ from that with constant properties. Existing equations obtained by regression analysis of experimental dat... Friction factor and heat transfer coefficient of liquid flow with variable properties can significantly differ from that with constant properties. Existing equations obtained by regression analysis of experimental data use correction factors to account for variable property effect. They are limited to specific kind of fluid and low or medium temperature differences. The correction factors of the equations for heating and cooling conditions are different. New explicit friction factor and Nusselt number equations for laminar forced convection of liquid with variable properties are derived with a first order approximation of dynamic viscosity-temperature variation. The new equations are applicable to all kinds of liquids and can be used for large temperature differences. Governing equations of laminar forced convection of water and ethanol are numerically solved using computational fluid dynamics(CFD)method and the results are used to verify the derived equations. The derived equations show good predictions of friction factors and Nusselt numbers for both heating and cooling conditions and show more accurate predictions than the existing equations. A dimensionless number is also introduced based on theoretical analysis to evaluate property variation effects on friction factors and heat transfer coefficients. 展开更多
关键词 laminar convection friction factor heat transfer coefficient variable property
原文传递
Variable fluid properties and thermal radiation effects on flow and heat transfer in micropolar fluid film past moving permeable infinite flat plate with slip velocity
7
作者 M.A.A.MAHMOUD S.E.WAHEED 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 2012年第5期663-678,共16页
This work deals with the influence of thermal radiation on the problem of the mixed convection thin film flow and heat transfer of a micropolar fluid past a moving infinite vertical porous flat plate with a slip veloc... This work deals with the influence of thermal radiation on the problem of the mixed convection thin film flow and heat transfer of a micropolar fluid past a moving infinite vertical porous flat plate with a slip velocity. The fluid viscosity and the thermal conductivity are assumed to be the functions of temperature. The equations governing the flow are solved numerically by the Chebyshev spectral method for some representative value of various parameters. In comparison with the previously published work, the excellent agreement is shown. The effects of various parameters on the velocity, the microrotation velocity, and the temperature profiles, as well as the skin-friction coefficient and the Nusselt number, are plotted and discussed. 展开更多
关键词 micropolar fluid thin film slip velocity variable fluid properties thermalradiation Chebyshev spectral method
在线阅读 下载PDF
Study of hybrid nanofluid flow in a stationary cone-disk system with temperature-dependent fluid properties
8
作者 A.S.JOHN B.MAHANTHESH G.LORENZINI 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2024年第4期677-694,共18页
Cone-disk systems find frequent use such as conical diffusers,medical devices,various rheometric,and viscosimetry applications.In this study,we investigate the three-dimensional flow of a water-based Ag-Mg O hybrid na... Cone-disk systems find frequent use such as conical diffusers,medical devices,various rheometric,and viscosimetry applications.In this study,we investigate the three-dimensional flow of a water-based Ag-Mg O hybrid nanofluid in a static cone-disk system while considering temperature-dependent fluid properties.How the variable fluid properties affect the dynamics and heat transfer features is studied by Reynolds's linearized model for variable viscosity and Chiam's model for variable thermal conductivity.The single-phase nanofluid model is utilized to describe convective heat transfer in hybrid nanofluids,incorporating the experimental data.This model is developed as a coupled system of convective-diffusion equations,encompassing the conservation of momentum and the conservation of thermal energy,in conjunction with an incompressibility condition.A self-similar model is developed by the Lie-group scaling transformations,and the subsequent self-similar equations are then solved numerically.The influence of variable fluid parameters on both swirling and non-swirling flow cases is analyzed.Additionally,the Nusselt number for the disk surface is calculated.It is found that an increase in the temperature-dependent viscosity parameter enhances heat transfer characteristics in the static cone-disk system,while the thermal conductivity parameter has the opposite effect. 展开更多
关键词 hybrid nanofluid cone-disk system laminar flow variable fluid property Nusselt number
在线阅读 下载PDF
Thermal Radiation Effects on 2D Stagnation Point Flow of a Heated Stretchable Sheet with Variable Viscosity and MHD in a Porous Medium
9
作者 Muhammad Abaid Ur Rehman Muhammad Asif Farooq Ahmed M.Hassan 《Frontiers in Heat and Mass Transfer》 EI 2024年第1期263-286,共24页
This paper proposes a mathematical modeling approach to examine the two-dimensional flow stagnates at x=0 over a heated stretchable sheet in a porous medium influenced by nonlinear thermal radiation,variable viscosity... This paper proposes a mathematical modeling approach to examine the two-dimensional flow stagnates at x=0 over a heated stretchable sheet in a porous medium influenced by nonlinear thermal radiation,variable viscosity,and MHD.This study’s main purpose is to examine how thermal radiation and varying viscosity affect fluid flow motion.Additionally,we consider the convective boundary conditions and incorporate the gyrotactic microorganisms equation,which describes microorganism behavior in response to fluid flow.The partial differential equations(PDEs)that represent the conservation equations for mass,momentum,energy,and microorganisms are then converted into a system of coupled ordinary differential equations(ODEs)through the inclusion of nonsimilarity variables.Using MATLAB’s built-in solver bvp4c,the resulting ODEs are numerically solved.The model’s complexity is assessed by plotting two-dimensional graphics of the solution profiles at various physical parameter values.The physical parameters considered in this study include skin friction coefficient,local Nusselt number,local Sherwood number,and density of motile microorganisms.These parameters measure,respectively,the roughness of the sheet,the transformation rate of heat,the rate at which mass is transferred to it,and the rate at which microorganisms are transferred to it.Our study shows that,depending on the magnetic parameter M,the presence of a porous medium causes a significant increase in fluid velocity,ranging from about 25%to 45%.Furthermore,with an increase in the Prandtl number Pr,we have seen a notable improvement of about 6%in fluid thermal conductivity.Additionally,our latest findings are in good agreement with published research for particular values.This study provides valuable insights into the behavior of fluid flow under various physical conditions and can be useful in designing and optimizing industrial processes. 展开更多
关键词 Stagnation point flow variable viscosity variable thermal properties heat source/sink NANOFLUID
在线阅读 下载PDF
Assessing Soil Properties and Landforms in the Mai-Negus Catchment, Northern Ethiopia 被引量:3
10
作者 Gebreyesus Brhane TESFAHUNEGN Lulseged TAMENE Paul L.G.VLEK 《Pedosphere》 SCIE CAS CSCD 2016年第5期745-759,共15页
Soil degradation is a serious environmental problem in Ethiopia. However, little information is documented on indicators such as variations in soil properties across different landforms in a catchment. This study was ... Soil degradation is a serious environmental problem in Ethiopia. However, little information is documented on indicators such as variations in soil properties across different landforms in a catchment. This study was aimed to assess soil properties and their changes across sites with different erosion statuses, and identify landscape positions that require prior management attention in the Mai-Negus catchment, northern Ethiopia. Three types of erosion-status sites(stable, eroding and aggrading) were identified using reconnaissance surveys, and then the corresponding soil samples were collected and analyzed. The major soil properties were significantly varied(P ≤ 0.05) among the three erosion-status sites. The highest soil p H, organic carbon, total nitrogen, cation exchange capacity, iron and zinc were recorded from the aggrading sites in the reservoir and valley landforms of the study catchment. A higher bulk density was generally recorded in the eroding sites, whereas a lower value was observed in the aggrading sites. The highest sand content was observed in the eroding sites of the mountain followed by the central ridge landform. The paired mean difference and the correlation matrix of most soil properties between the different erosion statuses also showed significant differences. About 95% of the erosionstatus sites were correctly classified by the discriminant function, indicating that the field survey-based classification was acceptable for decision making. On the basis of this study, suitable interventions should thus be introduced to the prioritized landforms, which are the mountain and central ridge, and eroding sites with severely degraded soil properties across the catchment. 展开更多
关键词 aggrading site discriminant function eroding site erosion status landscape soil property variability stable site
原文传递
Thermal analysis of annular fins with temperature-dependent thermal properties
11
作者 I. G. AKSOY 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 2013年第11期1349-1360,共12页
The thermal analysis of the annular rectangular profile fins with variable thermal properties is investigated by using the homotopy analysis method (HAM). The thermal conductivity and heat transfer coefficient are a... The thermal analysis of the annular rectangular profile fins with variable thermal properties is investigated by using the homotopy analysis method (HAM). The thermal conductivity and heat transfer coefficient are assumed to vary with a linear and power-law function of temperature, respectively. The effects of the thermal-geometric fin parameter and the thermal conductivity parameter variations on the temperature distribution and fin efficiency are investigated for different heat transfer modes. Results from the HAM are compared with numerical results of the finite difference method (FDM). It can be seen that the variation of dimensionless parameters has a significant effect on the temperature distribution and fin efficiency. 展开更多
关键词 annular fin variable thermal property homotopy analysis method
在线阅读 下载PDF
Spatially variable soils affecting geotechnical strip foundation design
12
作者 Joanna Pieczyńska-Kozowska Giovanna Vessia 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2022年第3期886-895,共10页
Natural soil variability is a well-known issue in geotechnical design,although not frequently managed in practice.When subsoil must be characterized in terms of mechanical properties for infrastructure design,random f... Natural soil variability is a well-known issue in geotechnical design,although not frequently managed in practice.When subsoil must be characterized in terms of mechanical properties for infrastructure design,random finite element method(RFEM)can be effectively adopted for shallow foundation design to gain a twofold purpose:(1)understanding how much the bearing capacity is affected by the spatial variability structure of soils,and(2)optimisation of the foundation dimension(i.e.width B).The present study focuses on calculating the bearing capacity of shallow foundations by RFEM in terms of undrained and drained conditions.The spatial variability structure of soil is characterized by the autocorrelation function and the scale of fluctuation(δ).The latter has been derived by geostatistical tools such as the ordinary Kriging(OK)approach based on 182 cone penetration tests(CPTs)performed in the alluvial plain in Bologna Province,Italy.Results show that the increase of the B/δratio not only reduces the bearing capacity uncertainty but also increases its mean value under drained conditions.Conversely,under the undrained condition,the autocorrelation function strongly affects the mean values of bearing capacity.Therefore,the authors advise caution when selecting the autocorrelation function model for describing the soil spatial variability structure and point out that undrained conditions are more affected by soil variability compared to the drained ones. 展开更多
关键词 Bearing capacity Shallow foundation Random finite element method(RFEM) Ordinary kriging(OK) Soil property variability structure Reliability-based design
在线阅读 下载PDF
Doping dependent metal to insulator transition in the(Bi,Pb)-2212 system:The evolution of structural and electronic properties with europium substitution
13
作者 Shabna Razia Sarun Pallian Murikoli +1 位作者 Vinu Surendran Syamaprasad Upendran 《Chinese Physics B》 SCIE EI CAS CSCD 2009年第9期4000-4006,共7页
The present work investigates the effect of europium substitution on the (Bi, Pb)-2212 system in the concentration range 0.5 ≤ x ≤1.0. Phase analysis and lattice parameter calculations on the powder diffraction da... The present work investigates the effect of europium substitution on the (Bi, Pb)-2212 system in the concentration range 0.5 ≤ x ≤1.0. Phase analysis and lattice parameter calculations on the powder diffraction data and the elemental analysis of EDX show that the Eu atoms are successfully substituted into the (Bi, Pb)-2212 system. Resistivity measurements (64-300 K) reveal that the system exhibits superconductivity at x ≤ 0.5 and semiconductivity at x 〉 0.5. With the complete suppression of superconductivity which is known to be a quasi-two dimensional phenomenon in these materials, a metal to insulator transition takes place at x = 0.6 and the predominant conduction mechanism is found to be variable range hopping between localized states, resulting in macroscopic semiconducting behaviour. The results of electrical and structural properties of the doped (Bi, Pb)-2212 compounds suggest that the decrease of charge carrier concentration and the induced structural disorder are the more effective and dominant mechanisms in the origin of the metal to insulator transition and suppression of superconductivity due to Eu substitution at its Sr site. 展开更多
关键词 (Bi Pb)-2212 superconductor metal to insulator transition variable range hopping electrical properties
原文传递
Effect of turbulence models on predicting convective heat transfer to hydrocarbon fuel at supercritical pressure 被引量:14
14
作者 Tao Zhi Cheng Zeyuan +1 位作者 Zhu Jianqin Li Haiwang 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2016年第5期1247-1261,共15页
A variety of turbulence models were used to perform numerical simulations of heat transfer for hydrocarbon fuel flowing upward and downward through uniformly heated vertical pipes at supercritical pressure. Inlet temp... A variety of turbulence models were used to perform numerical simulations of heat transfer for hydrocarbon fuel flowing upward and downward through uniformly heated vertical pipes at supercritical pressure. Inlet temperatures varied from 373 K to 663 K, with heat flux rang- ing from 300 kW/m2 to 550 kW/m2. Comparative analyses between predicted and experimental results were used to evaluate the ability of turbulence models to respond to variable thermophysical properties of hydrocarbon fuel at supercritical pressure. It was found that the prediction performance of turbulence models is mainly determined by the damping function, which enables them to respond differently to local flow conditions. Although prediction accuracy for experimental results varied from condition to condition, the shear stress transport (SST) and launder and sharma models performed better than all other models used in the study. For very small buoyancy-influenced runs, the thermal-induced acceleration due to variations in density lead to the impairment of heat transfer occurring in the vicinity of pseudo-critical points, and heat transfer was enhanced at higher temperatures through the combined action of four thermophysical properties: density, viscosity, thermal conductivity and specific heat. For very large buoyancy- influenced runs, the thermal-induced acceleration effect was over predicted by the LS and AB models. 展开更多
关键词 Buoyancy effect Hydrocarbon fuel Supercritical pressure Turbulence models variable properties
原文传递
Convection in the Rayleigh-Bénard Flow with all Fluid Properties Variable 被引量:1
15
作者 Athanasios Sassos Asterios Pantokratoras 《Journal of Thermal Science》 SCIE EI CAS CSCD 2011年第5期454-459,共6页
In the present paper, the effect of variable fluid properties (density, viscosity, thermal conductivity and specific heat) on the convection in the classical Rayleigh-Benard problem is investigated. The investigatio... In the present paper, the effect of variable fluid properties (density, viscosity, thermal conductivity and specific heat) on the convection in the classical Rayleigh-Benard problem is investigated. The investigation concerns water, air, and engine oil by taking into account the variation of fluid properties with temperature. The results are obtained by numerically solving the governing equations, using the SIMPLE algorithm and covering large temperature differences. It is found that the critical Rayleigh number increases as the temperature difference increases considering all fluid properties variable. However, when the fluid properties are kept constant, calculated at the mean temperature, and only density is considered variable, the critical Rayleigh number either decreases or remains constant. 展开更多
关键词 Rayleigh-Benard variable properties ONSET numerical investigation.
原文传递
Effects of variable fluid properties on the thin film flow of Ostwald-de Waele fluid over a stretching surface 被引量:1
16
作者 VAJRAVELU K. PRASAD K. V. RAJU B. T. 《Journal of Hydrodynamics》 SCIE EI CSCD 2013年第1期10-19,共10页
We investigate, in this paper, the effects of thermo-physical properties on the flow and heat transfer in a thin film of a power-law liquid over a horizontal stretching surface in the presence of a viscous dissipation... We investigate, in this paper, the effects of thermo-physical properties on the flow and heat transfer in a thin film of a power-law liquid over a horizontal stretching surface in the presence of a viscous dissipation. The fluid properties, namely the fluid viscosity and the fluid thermal conductivity, are assumed to vary with temperature. Using a similarity transformation, the governing partial differential equations with a time dependent boundary are converted into coupled non-linear Ordinary Differential Equations (ODEs) with variable coefficients. Numerical solutions of the coupled ODEs are obtained by a finite difference scheme known as the Keller-box method. Results for the velocity and temperature distributions are presented graphically for different values of the pertinent parameters. The effects of unsteady parameter on the skin friction, the wall temperature gradient and the film thickness are presented and analyzed for zero and non-zero values of the temperature-dependent thermo-physical properties. The results obtained reveal many interesting features that warrant further study on the non-Newtonian thin film fluid flow phenomena, especially the shear-thinning phenomena. 展开更多
关键词 Thin film flow variable fluid properties viscous dissipation finite difference method
原文传递
Influence of Structure Parameters on Performance of the Thermoelectric Module
17
作者 杜群贵 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2011年第3期464-468,共5页
A numerical model of thermoelectric module (TEM) is created by academic analysis,and the impacts of the resistance ratio and thermoelement size on the output power and thermoelectric efficiency of the TEM are analyz... A numerical model of thermoelectric module (TEM) is created by academic analysis,and the impacts of the resistance ratio and thermoelement size on the output power and thermoelectric efficiency of the TEM are analyzed by the MATLAB numerical calculation.The numerical model is validated by the ANSYS thermal,electrical,and structural coupling simulation.The effects of the variable physical property parameters and contact effect on the output power and thermoelectric efficiency are evaluated,and the concept of aspect ratio optimal domain is proposed,which provides a new design approach for the TEM. 展开更多
关键词 thermoelectric module (TEM) thermoelement contact effect variable physical property parameters output power thermoelectric efficiency
原文传递
Combination of Nonconvex Penalties and Ridge Regression for High-Dimensional Linear Models
18
作者 Xiuli WANG Mingqiu WANG 《Journal of Mathematical Research with Applications》 CSCD 2014年第6期743-753,共11页
Nonconvex penalties including the smoothly clipped absolute deviation penalty and the minimax concave penalty enjoy the properties of unbiasedness, continuity and sparsity,and the ridge regression can deal with the co... Nonconvex penalties including the smoothly clipped absolute deviation penalty and the minimax concave penalty enjoy the properties of unbiasedness, continuity and sparsity,and the ridge regression can deal with the collinearity problem. Combining the strengths of nonconvex penalties and ridge regression(abbreviated as NPR), we study the oracle property of the NPR estimator in high dimensional settings with highly correlated predictors, where the dimensionality of covariates pn is allowed to increase exponentially with the sample size n. Simulation studies and a real data example are presented to verify the performance of the NPR method. 展开更多
关键词 high dimension nonconvex penalties oracle property ridge regression variable selection
原文传递
Seasonal variability of cirrus depolarization properties derived from CALIPSO lidar measurements over Beijing in China 被引量:4
19
作者 路小梅 江月松 +2 位作者 张绪国 周波 欧军 《Chinese Optics Letters》 SCIE EI CAS CSCD 2010年第2期127-129,共3页
The seasonal variability of cirrus depolarization ratio and its altitude at the region of Beijing (39.93°N, 116.43°E, the capital of China) are presented. From the results obtained from the cloud aerosol l... The seasonal variability of cirrus depolarization ratio and its altitude at the region of Beijing (39.93°N, 116.43°E, the capital of China) are presented. From the results obtained from the cloud aerosol lidar and infrared pathfinder satellite observations lidar measurements, it appears that the values of depolarization ratio and altitude of cirrus are generally higher in autumn and summer than those in spring and winter, and the cirrus altitude is modulated by the height of tropopause. Additionally, the depolarization ratio tends to linearly vary with the increase of altitude and the decrease of temperature. 展开更多
关键词 CALIPSO Seasonal variability of cirrus depolarization properties derived from CALIPSO lidar measurements over Beijing in China OVER
原文传递
Experimental investigation on variability in properties of Amazonian wood species Muiracatiara ( Astronium lecointei ) and Maçaranduba ( Manilkara huberi ) focusing guitar fingerboards manufacturing
20
作者 Roseli Felix da Silva Ribeiro JoséFlávio Silveira Feiteira +1 位作者 Jayme Pereira de Gouvê Alexandre Furtado Ferreira 《Journal of Bioresources and Bioproducts》 EI 2021年第1期33-38,共6页
In face of scarcity in the supply of non-traditional Brazilian woods properly treated for use in high quality musical instruments,pieces of Amazonian wood species muiracatiara(Astronium lecointei)and maçaranduba(... In face of scarcity in the supply of non-traditional Brazilian woods properly treated for use in high quality musical instruments,pieces of Amazonian wood species muiracatiara(Astronium lecointei)and maçaranduba(Manilkara huberi)purchased in the common internal Brazilian timber market were examined.These species were pre-selected for use in fingerboards of acoustic and electric guitars due to similar properties with ebony(Diospyros crassiflora).Variabilities of elastic modulus parallel to grain and density were investigated inside wooden pieces.In addition,referred parameters were used in calculation of speed of sound.Statistical tests were performed in order to compare both species and revealed inequality for variances of dynamic elastic modulus(E_(d))and speed of sound,but equality for density.Equality of means was also examined via unequal variance t-test.Despite color differences,lower variability of M.huberi led to the indication of this species as likely capable to substitute satisfactorily ebony in fingerboards manufacturing. 展开更多
关键词 Mechanical properties variability Wood grain slope Experimental analysis Impulse excitation technique F-TEST
在线阅读 下载PDF
上一页 1 2 下一页 到第
使用帮助 返回顶部