Open source feld operation and manipulation(OpenFOAM)is one of the most prevalent open source computational fluid dynamics(CFD)software.It is very convenient for researchers to develop their own codes based on the...Open source feld operation and manipulation(OpenFOAM)is one of the most prevalent open source computational fluid dynamics(CFD)software.It is very convenient for researchers to develop their own codes based on the class library toolbox within OpenFOAM.In recent years,several density-based solvers within OpenFOAM for supersonic/hypersonic compressible flow are coming up.Although the capabilities of these solvers to capture shock wave have already been verifed by some researchers,these solvers still need to be validated comprehensively as commercial CFD software.In boundary layer where diffusion is the dominant transportation manner,the convective discrete schemes'capability to capture aerothermal variables,such as temperature and heat flux,is different from each other due to their own numerical dissipative characteristics and from viewpoint of this capability,these compressible solvers within OpenFOAM can be validated further.In this paper,frstly,the organizational architecture of density-based solvers within OpenFOAM is analyzed.Then,from the viewpoint of the capability to capture aerothermal variables,the numerical results of several typical geometrical felds predicted by these solvers are compared with both the outcome obtained from the commercial software Fastran and the experimental data.During the computing process,the Roe,AUSM+(Advection Upstream Splitting Method),and HLLC(Harten-Lax-van Leer-Contact)convective discrete schemes of which the spatial accuracy is 1st and 2nd order are utilized,respectively.The compared results show that the aerothermal variables are in agreement with results generated by Fastran and the experimental data even if the1st order spatial precision is implemented.Overall,the accuracy of these density-based solvers can meet the requirement of engineering and scientifc problems to capture aerothermal variables in diffusion boundary layer.展开更多
A novel split-gate power UMOSFET with a variable K dielectric layer is proposed. This device shows a 36.2% reduction in the specific on=state resistance at a breakdown voltage of 115 V, as compared with the SGE-UMOS d...A novel split-gate power UMOSFET with a variable K dielectric layer is proposed. This device shows a 36.2% reduction in the specific on=state resistance at a breakdown voltage of 115 V, as compared with the SGE-UMOS device. Numerical simulation results indicate that the proposed device features high performance with an improved figure of merit of Qg × RON and BV^2/RON, as compared with the previous power UMOSFET.展开更多
In this work, we consider the flow through composite porous layers of variable permeability, with the middle layer representing a porous core bounded by two Darcy layers. Brinkman’s equation is valid in the middle la...In this work, we consider the flow through composite porous layers of variable permeability, with the middle layer representing a porous core bounded by two Darcy layers. Brinkman’s equation is valid in the middle layer and has been reduced to an Airy’s inhomogeneous differential equation. Solution is obtained in terms of Airy’s functions and the Nield-Kuznetsov function.展开更多
With the rapid development of the city, it is necessar</span><span style="font-family:Verdana;">y to obtain geological information within 500 meters. Electrical prospecting is not only low cost a...With the rapid development of the city, it is necessar</span><span style="font-family:Verdana;">y to obtain geological information within 500 meters. Electrical prospecting is not only low cost and simple operation, but also solves the problem of insufficient drilling density in </span><span style="font-family:Verdana;">a </span><span style="font-family:Verdana;">survey</span><span style="font-family:Verdana;">. However, due to the dense urban buildings and strong electromagnetic interference, it is difficult for traditional electrical instruments to obtain effective data</span><span style="font-family:Verdana;">.</span><span style="font-family:""> </span><span style="font-family:Verdana;">An </span><span style="font-family:Verdana;">anti-interference electrical method instrument is designed.</span><span style="font-family:""> </span><span style="font-family:""><span style="font-family:Verdana;">In the application test of Tongzhou</span><span style="color:black;font-family:Verdana;"> core area in Beijing, the resistivity sounding data collected by </span></span><span style="font-family:"color:black;"><span style="font-family:Verdana;">anti-interference</span><span style="font-family:Verdana;"> electrical method </span><span style="font-family:Verdana;">instrument</span><span style="font-family:Verdana;"> is stable and reliable;inversion results of sounding are basically consistent with borehole data;</span><span style="font-family:Verdana;">the known Zhangjiawan fault and Yaoxinzhuang fault are obvious;basement karst collapse area inferred is basically coincident with the historical collapse area. It is proved that the anti-interference electrical </span><span style="font-family:Verdana;">method</span><span style="font-family:Verdana;"> instrument is effective and can be applied to the geological survey of underground space in other cities.展开更多
基金supported by the National Natural Science Foundation of China(Grant Nos.51176038,51121004)
文摘Open source feld operation and manipulation(OpenFOAM)is one of the most prevalent open source computational fluid dynamics(CFD)software.It is very convenient for researchers to develop their own codes based on the class library toolbox within OpenFOAM.In recent years,several density-based solvers within OpenFOAM for supersonic/hypersonic compressible flow are coming up.Although the capabilities of these solvers to capture shock wave have already been verifed by some researchers,these solvers still need to be validated comprehensively as commercial CFD software.In boundary layer where diffusion is the dominant transportation manner,the convective discrete schemes'capability to capture aerothermal variables,such as temperature and heat flux,is different from each other due to their own numerical dissipative characteristics and from viewpoint of this capability,these compressible solvers within OpenFOAM can be validated further.In this paper,frstly,the organizational architecture of density-based solvers within OpenFOAM is analyzed.Then,from the viewpoint of the capability to capture aerothermal variables,the numerical results of several typical geometrical felds predicted by these solvers are compared with both the outcome obtained from the commercial software Fastran and the experimental data.During the computing process,the Roe,AUSM+(Advection Upstream Splitting Method),and HLLC(Harten-Lax-van Leer-Contact)convective discrete schemes of which the spatial accuracy is 1st and 2nd order are utilized,respectively.The compared results show that the aerothermal variables are in agreement with results generated by Fastran and the experimental data even if the1st order spatial precision is implemented.Overall,the accuracy of these density-based solvers can meet the requirement of engineering and scientifc problems to capture aerothermal variables in diffusion boundary layer.
基金Project supported by the National Natural Science Foundation of China (Grant No. 60906048)the Program for New Century Excellent Talents in University,China (Grant No. NCET-10-0052)the Fundamental Research Funds for the Central Universities,China (Grant No. HEUCFT1008)
文摘A novel split-gate power UMOSFET with a variable K dielectric layer is proposed. This device shows a 36.2% reduction in the specific on=state resistance at a breakdown voltage of 115 V, as compared with the SGE-UMOS device. Numerical simulation results indicate that the proposed device features high performance with an improved figure of merit of Qg × RON and BV^2/RON, as compared with the previous power UMOSFET.
文摘In this work, we consider the flow through composite porous layers of variable permeability, with the middle layer representing a porous core bounded by two Darcy layers. Brinkman’s equation is valid in the middle layer and has been reduced to an Airy’s inhomogeneous differential equation. Solution is obtained in terms of Airy’s functions and the Nield-Kuznetsov function.
文摘With the rapid development of the city, it is necessar</span><span style="font-family:Verdana;">y to obtain geological information within 500 meters. Electrical prospecting is not only low cost and simple operation, but also solves the problem of insufficient drilling density in </span><span style="font-family:Verdana;">a </span><span style="font-family:Verdana;">survey</span><span style="font-family:Verdana;">. However, due to the dense urban buildings and strong electromagnetic interference, it is difficult for traditional electrical instruments to obtain effective data</span><span style="font-family:Verdana;">.</span><span style="font-family:""> </span><span style="font-family:Verdana;">An </span><span style="font-family:Verdana;">anti-interference electrical method instrument is designed.</span><span style="font-family:""> </span><span style="font-family:""><span style="font-family:Verdana;">In the application test of Tongzhou</span><span style="color:black;font-family:Verdana;"> core area in Beijing, the resistivity sounding data collected by </span></span><span style="font-family:"color:black;"><span style="font-family:Verdana;">anti-interference</span><span style="font-family:Verdana;"> electrical method </span><span style="font-family:Verdana;">instrument</span><span style="font-family:Verdana;"> is stable and reliable;inversion results of sounding are basically consistent with borehole data;</span><span style="font-family:Verdana;">the known Zhangjiawan fault and Yaoxinzhuang fault are obvious;basement karst collapse area inferred is basically coincident with the historical collapse area. It is proved that the anti-interference electrical </span><span style="font-family:Verdana;">method</span><span style="font-family:Verdana;"> instrument is effective and can be applied to the geological survey of underground space in other cities.