Isoperimetric problems consist in minimizing or maximizing a cost functional subject to an integral constraint.In this work, we present two fractional isoperimetric problems where the Lagrangian depends on a combined ...Isoperimetric problems consist in minimizing or maximizing a cost functional subject to an integral constraint.In this work, we present two fractional isoperimetric problems where the Lagrangian depends on a combined Caputo derivative of variable fractional order and we present a new variational problem subject to a holonomic constraint. We establish necessary optimality conditions in order to determine the minimizers of the fractional problems. The terminal point in the cost integral,as well as the terminal state, are considered to be free, and we obtain corresponding natural boundary conditions.展开更多
Fractional calculus has been widely used to study the flow of viscoelastic fluids recently,and fractional differential equations have attracted a lot of attention.However,the research has shown that the fractional equ...Fractional calculus has been widely used to study the flow of viscoelastic fluids recently,and fractional differential equations have attracted a lot of attention.However,the research has shown that the fractional equation with constant order operators has certain limitations in characterizing some physical phenomena.In this paper,the viscoelastic fluid flow of generalized Maxwell fluids in an infinite straight pipe driven by a periodic pressure gradient is investigated systematically.Consider the complexity of the material structure and multi-scale effects in the viscoelastic fluid flow.The modified time fractional Maxwell models and the corresponding governing equations with distributed/variable order time fractional derivatives are proposed.Based on the L1-approximation formula of Caputo fractional derivatives,the implicit finite difference schemes for the distributed/variable order time fractional governing equations are presented,and the numerical solutions are derived.In order to test the correctness and availability of numerical schemes,two numerical examples are established to give the exact solutions.The comparisons between the numerical solutions and the exact solutions have been made,and their high consistency indicates that the present numerical methods are effective.Then,this paper analyzes the velocity distributions of the distributed/variable order fractional Maxwell governing equations under specific conditions,and discusses the effects of the weight coefficient(α)in distributed order time fractional derivatives,the orderα(r,t)in variable fractional order derivatives,the relaxation timeλ,and the frequencyωof the periodic pressure gradient on the fluid flow velocity.Finally,the flow rates of the distributed/variable order fractional Maxwell governing equations are also studied.展开更多
In this article, Crank-Nicolson method is used to study the variable order fractional cable equation. The variable order fractional derivatives are described in the Riemann- Liouville and the Griinwald-Letnikov sense....In this article, Crank-Nicolson method is used to study the variable order fractional cable equation. The variable order fractional derivatives are described in the Riemann- Liouville and the Griinwald-Letnikov sense. The stability analysis of the proposed technique is discussed. Numerical results are provided and compared with exact solutions to show the accuracy of the proposed technique.展开更多
The Pfaff-Birkhoff variational problem and its Noether symmetry are studied in terms of Riemann-Liouville fractional derivatives of variable order. Based on the combination of variational principle and fractional calc...The Pfaff-Birkhoff variational problem and its Noether symmetry are studied in terms of Riemann-Liouville fractional derivatives of variable order. Based on the combination of variational principle and fractional calculus of variable order,the Pfaff-Birkhoff variational principle with Riemann-Liouville fractional derivatives of variable order is proposed, and the fractional Birkhoff's equations of variable order are derived. Then,the Noether 's theorem for the fractional Birkhoffian system of variable order is given. At last,an example is expressed to illustrate the application of the results.展开更多
基金supported by Portuguese Funds through the Center for Research and Development in Mathematics and Applications(CIDMA)the Portuguese Foundation for Science and Technology(FCT)(UID/MAT/04106/2013)supported by FCT through the Ph.D. fellowship SFRH/BD/42557/2007
文摘Isoperimetric problems consist in minimizing or maximizing a cost functional subject to an integral constraint.In this work, we present two fractional isoperimetric problems where the Lagrangian depends on a combined Caputo derivative of variable fractional order and we present a new variational problem subject to a holonomic constraint. We establish necessary optimality conditions in order to determine the minimizers of the fractional problems. The terminal point in the cost integral,as well as the terminal state, are considered to be free, and we obtain corresponding natural boundary conditions.
基金the National Natural Science Foundation of China(Nos.12172197,12171284,12120101001,and 11672163)the Fundamental Research Funds for the Central Universities(No.2019ZRJC002)。
文摘Fractional calculus has been widely used to study the flow of viscoelastic fluids recently,and fractional differential equations have attracted a lot of attention.However,the research has shown that the fractional equation with constant order operators has certain limitations in characterizing some physical phenomena.In this paper,the viscoelastic fluid flow of generalized Maxwell fluids in an infinite straight pipe driven by a periodic pressure gradient is investigated systematically.Consider the complexity of the material structure and multi-scale effects in the viscoelastic fluid flow.The modified time fractional Maxwell models and the corresponding governing equations with distributed/variable order time fractional derivatives are proposed.Based on the L1-approximation formula of Caputo fractional derivatives,the implicit finite difference schemes for the distributed/variable order time fractional governing equations are presented,and the numerical solutions are derived.In order to test the correctness and availability of numerical schemes,two numerical examples are established to give the exact solutions.The comparisons between the numerical solutions and the exact solutions have been made,and their high consistency indicates that the present numerical methods are effective.Then,this paper analyzes the velocity distributions of the distributed/variable order fractional Maxwell governing equations under specific conditions,and discusses the effects of the weight coefficient(α)in distributed order time fractional derivatives,the orderα(r,t)in variable fractional order derivatives,the relaxation timeλ,and the frequencyωof the periodic pressure gradient on the fluid flow velocity.Finally,the flow rates of the distributed/variable order fractional Maxwell governing equations are also studied.
文摘In this article, Crank-Nicolson method is used to study the variable order fractional cable equation. The variable order fractional derivatives are described in the Riemann- Liouville and the Griinwald-Letnikov sense. The stability analysis of the proposed technique is discussed. Numerical results are provided and compared with exact solutions to show the accuracy of the proposed technique.
基金National Natural Science Foundations of China(Nos.10972151,11272227,11572212)
文摘The Pfaff-Birkhoff variational problem and its Noether symmetry are studied in terms of Riemann-Liouville fractional derivatives of variable order. Based on the combination of variational principle and fractional calculus of variable order,the Pfaff-Birkhoff variational principle with Riemann-Liouville fractional derivatives of variable order is proposed, and the fractional Birkhoff's equations of variable order are derived. Then,the Noether 's theorem for the fractional Birkhoffian system of variable order is given. At last,an example is expressed to illustrate the application of the results.