In this paper, the method of semi-active control with variable damper is presented to deal with the relatively poor transversal seismic condition of bridge. Based on the LQR control algorithm the control effectiveness...In this paper, the method of semi-active control with variable damper is presented to deal with the relatively poor transversal seismic condition of bridge. Based on the LQR control algorithm the control effectiveness for transverse vibration of pier-beam structure of bridge are discussed. Taking the structure as a multiple-degree of freedom system, the calculating model of structure-variable damper system is set up and the differential equation is derived, combined with practical example the control system is simulated and studied by various semi-active control algorithms and passive strategy with MATLAB. The results show that the semi-active control with variable damper can decrease the transverse vibration effectively and the control effect is obvious.展开更多
Professor T. T. Soong is one of the early pioneers in field of earthquake responsc control of structures. A new type of smart damper, which is based on an Energy Dissipating Restraint (EDR), is presented in this pap...Professor T. T. Soong is one of the early pioneers in field of earthquake responsc control of structures. A new type of smart damper, which is based on an Energy Dissipating Restraint (EDR), is presented in this paper. The EDR by Nims and Kelly, which has a triangle hysteretic loop, behaves like an active variable stiffness system (AVS) and possesses the basic characteristics of a linear viscous damper but has difficulty in capturing the output and large stroke simultaneously needed for practical applicataions in engineering structures. In order to overcome this limitation, the friction surface in the original Sumitomo EDR is divided into two parts with low and high friction coefficients in this paper. The results of finite element analysis studies show that the new type of smart friction damper enables large friction force in proportion to relative displacement between two ends of the damper and has a large allowable displacement to fit the demands of engineering applications. However, unlike the EDR by Nims and Kelly, this type of friction variable damper cannot self re-center. However, the lateral stiffness can be used to restore the structure. The nonlinear time history analysis of earthquake response for a structure equipped with the proposed friction variable dampers was carried out using the IDARC computer program. The results indicate that the proposed damper can successfully reduce the earthquake response of a structure.展开更多
This paper focuses on the investigation of a hybrid seismic isolation system with passive variable friction dampers for protection of structures against near fault earthquakes. The seismic isolation can be implemented...This paper focuses on the investigation of a hybrid seismic isolation system with passive variable friction dampers for protection of structures against near fault earthquakes. The seismic isolation can be implemented by replacing the conventional columns fixed to the foundations by seismic isolating ones. These columns allow horizontal displacement between the superstructure and the foundations and decouple the building from the damaging earthquake motion. As a result, the forces in the structural elements decrease and damage that may be caused to the building by the earthquake significantly decreases. However, this positive effect is achieved on account of displacements occurring in the isolating columns. These displacements become very large when the structure is subjected to a strong earthquake. In this case, impact may occur between the parts of the isolating column yielding their damage or collapse. In order to limit the displacements in the isolating columns, it is proposed to add variable friction dampers. A method for selecting the dampers' properties is proposed. It is carried out using an artificial ground motion record and optimal active control algorithm. Numerical simulation of a sevenstory structure shows that the proposed method allows efficient reduction in structural response and limits the displacements at the seismic isolating columns.展开更多
A variable inertial damper, whose viscous damping coefficient can be adjusted by changing the gap between inertia wheel and motor spindle, is designed in servomechanism of zero-drive hobbing machine and is directly at...A variable inertial damper, whose viscous damping coefficient can be adjusted by changing the gap between inertia wheel and motor spindle, is designed in servomechanism of zero-drive hobbing machine and is directly attached on the motor spindle. The mathematical model of servo system with inertial damper is built. By using theoretical analysis and system simulation, it is demonstrated that the variable inertial damper with optimal damping coefficient and moment of inertia should lead to no resonance point in wider frequency range of exciting force. Therefore, its application in zero-drive hobbing machine makes this system not only achieve higher system stiffness to overcome load torque fluctuation, but also gain better stability.展开更多
One of the challenges in civil engineering is to find an innovative means of suppressing the structural vibration due to earthquake and wind loadings. This paper presents an approach for effectively suppressing vibrat...One of the challenges in civil engineering is to find an innovative means of suppressing the structural vibration due to earthquake and wind loadings. This paper presents an approach for effectively suppressing vibrations of a structure with variable friction damper using a new Bang-Bang control input. A continuous function of story velocities is used to represent the improved control to reduce chatter, high frequency switching and avoid instability. With a genetic algorithm, the amplitudes of control and preloading friction forces individually prescribed in the controller and damper are optimized for enhancing the seismic performance of buildings. The control strategy for the friction damper is proposed for a three story building with one variable friction damper installed at the first story for seismic reduction. The numerical results indicate that a better reduction of peak response accelerations of floors can be achieved than those of the unmodified controller, and the adaptability of the control system is also improved greatly by comparison with the reduction ratios of the structural response energy excited by different earthquake intensities.展开更多
A novel variable damper using an adjustable energy harvesting structure is proposed for semi-active vibration systems. The fluid flowing in a hydraulic cylinder is employed to drive an electromagnetic generator for ha...A novel variable damper using an adjustable energy harvesting structure is proposed for semi-active vibration systems. The fluid flowing in a hydraulic cylinder is employed to drive an electromagnetic generator for harvesting vibration energy, which on the other hand, leads to a damping effect of the hydraulic damper. To make the damping force variable, an adjustable resistor is adopted to tune the capability of energy harvesting. The present approach is validated by both theoretical analysis and experimental evaluation. When connected with different resistance loads, the prototype damper has different equivalent damping coefficients ranging from 3. 987 × 104 to 2. 488 × 105 N· s/m. The results show that the damping force of the damper is variable in response to the adjustable load for the vibration energy harvesting.展开更多
文摘In this paper, the method of semi-active control with variable damper is presented to deal with the relatively poor transversal seismic condition of bridge. Based on the LQR control algorithm the control effectiveness for transverse vibration of pier-beam structure of bridge are discussed. Taking the structure as a multiple-degree of freedom system, the calculating model of structure-variable damper system is set up and the differential equation is derived, combined with practical example the control system is simulated and studied by various semi-active control algorithms and passive strategy with MATLAB. The results show that the semi-active control with variable damper can decrease the transverse vibration effectively and the control effect is obvious.
基金National Basic Research Program of China (973 Program) Under Grant No. 2007CB714200
文摘Professor T. T. Soong is one of the early pioneers in field of earthquake responsc control of structures. A new type of smart damper, which is based on an Energy Dissipating Restraint (EDR), is presented in this paper. The EDR by Nims and Kelly, which has a triangle hysteretic loop, behaves like an active variable stiffness system (AVS) and possesses the basic characteristics of a linear viscous damper but has difficulty in capturing the output and large stroke simultaneously needed for practical applicataions in engineering structures. In order to overcome this limitation, the friction surface in the original Sumitomo EDR is divided into two parts with low and high friction coefficients in this paper. The results of finite element analysis studies show that the new type of smart friction damper enables large friction force in proportion to relative displacement between two ends of the damper and has a large allowable displacement to fit the demands of engineering applications. However, unlike the EDR by Nims and Kelly, this type of friction variable damper cannot self re-center. However, the lateral stiffness can be used to restore the structure. The nonlinear time history analysis of earthquake response for a structure equipped with the proposed friction variable dampers was carried out using the IDARC computer program. The results indicate that the proposed damper can successfully reduce the earthquake response of a structure.
文摘This paper focuses on the investigation of a hybrid seismic isolation system with passive variable friction dampers for protection of structures against near fault earthquakes. The seismic isolation can be implemented by replacing the conventional columns fixed to the foundations by seismic isolating ones. These columns allow horizontal displacement between the superstructure and the foundations and decouple the building from the damaging earthquake motion. As a result, the forces in the structural elements decrease and damage that may be caused to the building by the earthquake significantly decreases. However, this positive effect is achieved on account of displacements occurring in the isolating columns. These displacements become very large when the structure is subjected to a strong earthquake. In this case, impact may occur between the parts of the isolating column yielding their damage or collapse. In order to limit the displacements in the isolating columns, it is proposed to add variable friction dampers. A method for selecting the dampers' properties is proposed. It is carried out using an artificial ground motion record and optimal active control algorithm. Numerical simulation of a sevenstory structure shows that the proposed method allows efficient reduction in structural response and limits the displacements at the seismic isolating columns.
基金This project is supported by Colleges and Universities Doctor Subject Special Science Foundation of China(No.20020611004)National Natural Science Foundation of China(No.50575232).
文摘A variable inertial damper, whose viscous damping coefficient can be adjusted by changing the gap between inertia wheel and motor spindle, is designed in servomechanism of zero-drive hobbing machine and is directly attached on the motor spindle. The mathematical model of servo system with inertial damper is built. By using theoretical analysis and system simulation, it is demonstrated that the variable inertial damper with optimal damping coefficient and moment of inertia should lead to no resonance point in wider frequency range of exciting force. Therefore, its application in zero-drive hobbing machine makes this system not only achieve higher system stiffness to overcome load torque fluctuation, but also gain better stability.
基金The project supported by the National Science Fund for Distinguished Young Scholars(50025823).
文摘One of the challenges in civil engineering is to find an innovative means of suppressing the structural vibration due to earthquake and wind loadings. This paper presents an approach for effectively suppressing vibrations of a structure with variable friction damper using a new Bang-Bang control input. A continuous function of story velocities is used to represent the improved control to reduce chatter, high frequency switching and avoid instability. With a genetic algorithm, the amplitudes of control and preloading friction forces individually prescribed in the controller and damper are optimized for enhancing the seismic performance of buildings. The control strategy for the friction damper is proposed for a three story building with one variable friction damper installed at the first story for seismic reduction. The numerical results indicate that a better reduction of peak response accelerations of floors can be achieved than those of the unmodified controller, and the adaptability of the control system is also improved greatly by comparison with the reduction ratios of the structural response energy excited by different earthquake intensities.
基金The National Natural Science Foundation of China(No.51375517)the Natural Science Foundation of CQ CSTC(No.2012JJJQ70001)the Project of Chongqing Innovation Team in University(No.KJTD201313)
文摘A novel variable damper using an adjustable energy harvesting structure is proposed for semi-active vibration systems. The fluid flowing in a hydraulic cylinder is employed to drive an electromagnetic generator for harvesting vibration energy, which on the other hand, leads to a damping effect of the hydraulic damper. To make the damping force variable, an adjustable resistor is adopted to tune the capability of energy harvesting. The present approach is validated by both theoretical analysis and experimental evaluation. When connected with different resistance loads, the prototype damper has different equivalent damping coefficients ranging from 3. 987 × 104 to 2. 488 × 105 N· s/m. The results show that the damping force of the damper is variable in response to the adjustable load for the vibration energy harvesting.