In this paper, the modified CK's direct method to find symmetry groups of nonlinear partial differential equation is extended to (2+1)-dimensional variable coeffficient canonical generalized KP (VCCGKP) equation...In this paper, the modified CK's direct method to find symmetry groups of nonlinear partial differential equation is extended to (2+1)-dimensional variable coeffficient canonical generalized KP (VCCGKP) equation. As a result, symmetry groups, Lie point symmetry group and Lie symmetry for the VCCGKP equation are obtained. In fact, the Lie point symmetry group coincides with that obtained by the standard Lie group approach. Applying the given Lie symmetry, we obtain five types of similarity reductions and a lot of new exact solutions, including hyperbolic function solutions, triangular periodic solutions, Jacobi elliptic function solutions and rational solutions, for the VCCGKP equation.展开更多
Starting from a simple transformation, and with the aid of symbolic computation, we establish the relationship between the solution of a generalized variable coefficient Kadomtsev–Petviashvili(vKP) equation and the s...Starting from a simple transformation, and with the aid of symbolic computation, we establish the relationship between the solution of a generalized variable coefficient Kadomtsev–Petviashvili(vKP) equation and the solution of a system of linear partial differential equations. According to this relation, we obtain Wronskian form solutions of the vKP equation, and further present N-soliton-like solutions for some degenerated forms of the vKP equation. Moreover,we also discuss the influences of arbitrary constants on the soliton and N-soliton solutions of the KPII equation.展开更多
Using the solution of general Korteweg-de Vries (KdV) equation, the solutions of the generalized variable coefficient Kadomtsev-Petviashvili (KP) equation are constructed, and then its new solitary wave-like solut...Using the solution of general Korteweg-de Vries (KdV) equation, the solutions of the generalized variable coefficient Kadomtsev-Petviashvili (KP) equation are constructed, and then its new solitary wave-like solution and Jacobi elliptic function solution are obtained.展开更多
基金The project supported by the Natural Science Foundation of Shandong Province of China under Grant Nos. 2004zx16 and Q2005A01
文摘In this paper, the modified CK's direct method to find symmetry groups of nonlinear partial differential equation is extended to (2+1)-dimensional variable coeffficient canonical generalized KP (VCCGKP) equation. As a result, symmetry groups, Lie point symmetry group and Lie symmetry for the VCCGKP equation are obtained. In fact, the Lie point symmetry group coincides with that obtained by the standard Lie group approach. Applying the given Lie symmetry, we obtain five types of similarity reductions and a lot of new exact solutions, including hyperbolic function solutions, triangular periodic solutions, Jacobi elliptic function solutions and rational solutions, for the VCCGKP equation.
基金Supported by the Fundamental Research Funds for the Central Universities under Grant No. BUPT2013RC0902
文摘Starting from a simple transformation, and with the aid of symbolic computation, we establish the relationship between the solution of a generalized variable coefficient Kadomtsev–Petviashvili(vKP) equation and the solution of a system of linear partial differential equations. According to this relation, we obtain Wronskian form solutions of the vKP equation, and further present N-soliton-like solutions for some degenerated forms of the vKP equation. Moreover,we also discuss the influences of arbitrary constants on the soliton and N-soliton solutions of the KPII equation.
文摘Using the solution of general Korteweg-de Vries (KdV) equation, the solutions of the generalized variable coefficient Kadomtsev-Petviashvili (KP) equation are constructed, and then its new solitary wave-like solution and Jacobi elliptic function solution are obtained.