To address the influence of the high-altitude low Reynolds number effect on compressors,this study investigates an axial transonic compressor through a numerical approach based on the Reynolds-averaged Navier-Stokes e...To address the influence of the high-altitude low Reynolds number effect on compressors,this study investigates an axial transonic compressor through a numerical approach based on the Reynolds-averaged Navier-Stokes equations.The entropy generation loss model and theγ-Reθttransition model are employed to analyze variations in compressor performance,flow field behavior,and flow loss under different flight altitudes.The results show that the increased flight altitude will induce a low Reynolds number effect,reducing the total pressure ratio,isentropic efficiency,peak efficiency,and compressor stall margin.Under peak efficiency conditions,the flow deflection in the rotor passage experiences a rapid decrease at altitudes above 20 km.Additionally,the separation line on the rotor suction surface and the location of the passage shock wave shift forward,leading to an expansion of the low-energy fluid range and a widening of the wake.The separation of the stator suction surface develops from a closed separation bubble at the leading edge to an open significant separation at the trailing edge.The pressure coefficient of the stator and rotor blades at the trailing edge shows a downward trend.Entropy generation increases in the spanwise and axial directions,with losses near the end walls dominating.The high-altitude low Reynolds number effect leads to a general decline in the performance of the transonic compressor and alters the flow field.展开更多
文摘To address the influence of the high-altitude low Reynolds number effect on compressors,this study investigates an axial transonic compressor through a numerical approach based on the Reynolds-averaged Navier-Stokes equations.The entropy generation loss model and theγ-Reθttransition model are employed to analyze variations in compressor performance,flow field behavior,and flow loss under different flight altitudes.The results show that the increased flight altitude will induce a low Reynolds number effect,reducing the total pressure ratio,isentropic efficiency,peak efficiency,and compressor stall margin.Under peak efficiency conditions,the flow deflection in the rotor passage experiences a rapid decrease at altitudes above 20 km.Additionally,the separation line on the rotor suction surface and the location of the passage shock wave shift forward,leading to an expansion of the low-energy fluid range and a widening of the wake.The separation of the stator suction surface develops from a closed separation bubble at the leading edge to an open significant separation at the trailing edge.The pressure coefficient of the stator and rotor blades at the trailing edge shows a downward trend.Entropy generation increases in the spanwise and axial directions,with losses near the end walls dominating.The high-altitude low Reynolds number effect leads to a general decline in the performance of the transonic compressor and alters the flow field.