In this paper,the class of starlike functions of complex order γ(γ∈ℂ−{0})is extended from the case on unit disk U=(z∈C:|z|<1)to the case on the unit ball B in a complex Banach space or the unit polydisk U^(n) i...In this paper,the class of starlike functions of complex order γ(γ∈ℂ−{0})is extended from the case on unit disk U=(z∈C:|z|<1)to the case on the unit ball B in a complex Banach space or the unit polydisk U^(n) in C^(n).Let g be a convex function in U. We mainly establish the sharp bounds of all terms of homogeneous polynomial expansions for a subclass of g-parametric starlike mappings of complex order γ on B (resp.U^(n))when the mappings f are k-fold symmetric, k ∈ N. Our results partly solve the Bieberbach conjecture in several complex variables and generalize some prior works.展开更多
基金supported by the National Natural Science Foundation of China(12061035)the Research Foundation of Jiangxi Science and Technology Normal University of China(2021QNBJRC003)supported by the Graduate Innovation Fund of Jiangxi Science and Technology Normal University(YC2024-X10).
文摘In this paper,the class of starlike functions of complex order γ(γ∈ℂ−{0})is extended from the case on unit disk U=(z∈C:|z|<1)to the case on the unit ball B in a complex Banach space or the unit polydisk U^(n) in C^(n).Let g be a convex function in U. We mainly establish the sharp bounds of all terms of homogeneous polynomial expansions for a subclass of g-parametric starlike mappings of complex order γ on B (resp.U^(n))when the mappings f are k-fold symmetric, k ∈ N. Our results partly solve the Bieberbach conjecture in several complex variables and generalize some prior works.