In this paper,a dual-polarized antenna operating at 3.5 GHz is presented with 2D beam-scanning performance.The steerable beam is realized based on a 2×2 active reflective metasurface.The active metasurface is com...In this paper,a dual-polarized antenna operating at 3.5 GHz is presented with 2D beam-scanning performance.The steerable beam is realized based on a 2×2 active reflective metasurface.The active metasurface is composed of folded annular rings and cross dipoles embedded with voltage-controlled varactor diodes.By tuning the capacitance values of the varactors,the reflective phase of the metasurface is reconfigured to tilt the main beam.To verify the scanning performance,a prototype is fabricated and measured.At 3.5 GHz,the measured scanning ranges are from-25°to 29°and-27°to 29°in the XOZ and YOZ planes,respectively.展开更多
The excellent reverse breakdown characteristics of Schottky barrier varactor(SBV)are crucially required for the application of high power and high efficiency multipliers.The SBV with a novel Schottky structure named m...The excellent reverse breakdown characteristics of Schottky barrier varactor(SBV)are crucially required for the application of high power and high efficiency multipliers.The SBV with a novel Schottky structure named metal-brim is fabricated and systemically evaluated.Compared with normal structure,the reverse breakdown voltage of the new type SBV improves from-7.31 V to-8.75 V.The simulation of the Schottky metal-brim SBV is also proposed.Three factors,namely distribution of leakage current,the electric field,and the area of space charge region are mostly concerned to explain the physical mechanism.Schottky metal-brim structure is a promising approach to improve the reverse breakdown voltage and reduce leakage current by eliminating the accumulation of charge at Schottky electrode edge.展开更多
This paper presents a concurrent dual-band branch-line coupler with an independently tunable center frequency. In the proposed architecture, the quarter-wavelength lines, which work at two separated bands concurrently...This paper presents a concurrent dual-band branch-line coupler with an independently tunable center frequency. In the proposed architecture, the quarter-wavelength lines, which work at two separated bands concurrently and can be tuned in one of them, are key components. Based on the analysis of ABCD-matrix, a novel hybrid structure and a pair of varactors topology are utilized to achieve concurrent dual-band operation and independent tunability, respectively. Using this configuration, it is convenient to tune the center frequency of the upper band, while the responses of the lower band remain unaltered. To verify the proposed idea, a demonstration is implemented and the simulated results are presented.展开更多
The optimization of high power terahertz monolithic integrated circuit (TMIC) is systemically studied based on the physical model of the Schottky barrier varactor (SBV) with interface defects and tunneling effect. An ...The optimization of high power terahertz monolithic integrated circuit (TMIC) is systemically studied based on the physical model of the Schottky barrier varactor (SBV) with interface defects and tunneling effect. An ultra-thin dielectric layer is added to describe the extra tunneling effect and the damping of thermionic emission current induced by the interface defects. Power consumption of the dielectric layer results in the decrease of capacitance modulation ration (Cmax/Cmin), and thus leads to poor nonlinear C–V characteristics. The proposed Schottky metal-brim (SMB) terminal structure could improve the capacitance modulation ration by reducing the influence of the interface charge and eliminating the fringing capacitance effect. Finally, a 215 GHz tripler TMIC is fabricated based on the SMB terminal structure. The output power is above 5 mW at 210–218 GHz and the maximum could exceed 10 mW at 216 GHz, which could be widely used in terahertz imaging, radiometers, and so on. This paper also provides theoretical support for the SMB structure to optimize the TMIC performance.展开更多
The left-handed nonlinear transmission line (LH-NLTL) based on monolithic microwave integrated circuit (MMIC) technology possesses significant advantages such as wide frequency band, high operating frequency, high...The left-handed nonlinear transmission line (LH-NLTL) based on monolithic microwave integrated circuit (MMIC) technology possesses significant advantages such as wide frequency band, high operating frequency, high conversion efficiency, and applications in millimeter and submillimeter wave frequency multiplier. The planar Schottky varactor diode (PSVD) is a major limitation to the performance of the LH-NLTL frequency multiplier as a nonlinear component. The design and the fabrication of the diode for such an application are presented. An accurate large-signal model of the diode is proposed. A 16 GHz-39,6 GHz LH NLTL frequency doubler using our large-signal model is reported for the first time. The measured maximum output powers of the 2nd harmonic are up to 8 dBm at 26.4 GHz, and above 0 dBm from 16 GHz to 39.6 GHz when the input power is 20 dBm. The application of the LH-NLTL frequency doubler furthermore validates the accuracy of the large-signal model of the PSVD.展开更多
A new technique for designing a varactor-tunable frequency selective surface (FSS) with an embedded bias network is proposed and experimentally verified. The proposed FSS is based on a square-ring slot FSS. The freq...A new technique for designing a varactor-tunable frequency selective surface (FSS) with an embedded bias network is proposed and experimentally verified. The proposed FSS is based on a square-ring slot FSS. The frequency tuning is achieved by inserting varactor diodes between the square mesh and each unattached square patch. The square mesh is divided into two parts for biasing the varactor diodes. Full-wave numerical simulations show that a wide tuning range can be achieved by changing the capacitances of these loaded varactors. Two homo-type samples using fixed lumped capacitors are fabricated and measured using a standard waveguide measurement setup. Excellent agreement between the measured and simulated results is demonstrated.展开更多
In this paper, we design a varactor-tunable metamaterial absorber (MA). The tunable MA is based on a mushroom-type high impedance surface (HIS), in which varactors are loaded between adjacent metal patches to adju...In this paper, we design a varactor-tunable metamaterial absorber (MA). The tunable MA is based on a mushroom-type high impedance surface (HIS), in which varactors are loaded between adjacent metal patches to adjust the capacitance and tune the resonance frequency, the primary ground plane is etched as the bias network to bias all of the varactors in parallel, and another ultra-thin grounded film is attached to the bottom. Its absorption characteristics are realized for electrically dielectric loss. The simulated values of a sample indicate that a tunable frequency range from 2.85 GHz to 2.22 GHz is achieved by adjusting the varactor capacitance from 0.1 pF to 2.0 pF, and better than 0.97 absorbance is realized; in addition, the tunable frequency range is expanded from 4.12 GHz to 1.70 GHz after optimization.展开更多
This paper presents a novel electronic tuner with high power handling capability utilizing varactors based on the asymmetric bilateral coupled microstrip transmission line. Through varying the bias voltage of the vara...This paper presents a novel electronic tuner with high power handling capability utilizing varactors based on the asymmetric bilateral coupled microstrip transmission line. Through varying the bias voltage of the varactor at the Ultra High Frequency (UHF) band, the performance of the tuner is demonstrated according to simulated and measured results from several cases with the return loss (S11 ) below -20 dB and the insertion loss (S21 ) within ±0.5 dB. Compared with tuners using p and t network, electronic tuner of this paper shows superior frequency agility as well as wide impendence coverage. Advanced biasing structure has been developed to improve power handling for high power level applications. It is expected that the novel tuner would be part of intelligent Radio Frequency (RF) front-ends system and cognitive wireless system in the future.展开更多
结合国内现有的加工工艺水平,提出自偏置条件下的反向并联二极管对电路结构.不但解决了三倍频器偏置电路加工的难题,而且可以有效实现奇次倍频.同时,利用HFSS和ADS软件,以场路结合的方式准确模拟三倍频器的电特性,考虑到寄生参数引入的...结合国内现有的加工工艺水平,提出自偏置条件下的反向并联二极管对电路结构.不但解决了三倍频器偏置电路加工的难题,而且可以有效实现奇次倍频.同时,利用HFSS和ADS软件,以场路结合的方式准确模拟三倍频器的电特性,考虑到寄生参数引入的影响.设计完成以后,器件加工以及电装过程均在国内完成.测试结果表明在221 GHz处,有最大输出功率3.1 m W,在219~227 GHz频率范围内输出功率均大于2 m W.以上研究为今后设计高效率亚毫米波倍频器提供重要的参考价值.展开更多
研制了一种基于肖特基变容二极管的0.17 THz二倍频器,该器件为0.34 THz无线通信系统收发前端提供了低相噪、低杂散的本振信号。倍频器结构基于波导腔体石英基片微带电路实现,其核心器件是多结正向并联的肖特基变容二极管。文中采用结参...研制了一种基于肖特基变容二极管的0.17 THz二倍频器,该器件为0.34 THz无线通信系统收发前端提供了低相噪、低杂散的本振信号。倍频器结构基于波导腔体石英基片微带电路实现,其核心器件是多结正向并联的肖特基变容二极管。文中采用结参数模型和三维电磁模型相结合的方式对二极管进行建模,通过两种电路匹配方式实现了0.17 THz二倍频器的最优化设计,最终完成器件的加工及测试。测试结果表明,在输入80~86 GHz,20 d Bm的驱动信号下,倍频器的最大输出功率达12.21 m W,倍频效率11%,输出频点为163 GHz;当前端输入功率达到饱和状态时,该频点输出功率可达21.41 m W。展开更多
基金supported by ZTE Industry-University-Institute Cooperation Funds under Grant No.HC-CN-20220719005。
文摘In this paper,a dual-polarized antenna operating at 3.5 GHz is presented with 2D beam-scanning performance.The steerable beam is realized based on a 2×2 active reflective metasurface.The active metasurface is composed of folded annular rings and cross dipoles embedded with voltage-controlled varactor diodes.By tuning the capacitance values of the varactors,the reflective phase of the metasurface is reconfigured to tilt the main beam.To verify the scanning performance,a prototype is fabricated and measured.At 3.5 GHz,the measured scanning ranges are from-25°to 29°and-27°to 29°in the XOZ and YOZ planes,respectively.
文摘The excellent reverse breakdown characteristics of Schottky barrier varactor(SBV)are crucially required for the application of high power and high efficiency multipliers.The SBV with a novel Schottky structure named metal-brim is fabricated and systemically evaluated.Compared with normal structure,the reverse breakdown voltage of the new type SBV improves from-7.31 V to-8.75 V.The simulation of the Schottky metal-brim SBV is also proposed.Three factors,namely distribution of leakage current,the electric field,and the area of space charge region are mostly concerned to explain the physical mechanism.Schottky metal-brim structure is a promising approach to improve the reverse breakdown voltage and reduce leakage current by eliminating the accumulation of charge at Schottky electrode edge.
基金Supported by the Provincial Natural Science Foundation of Zhejiang(No.Y1101270)the National Natural Science Foundation of China(No.61171040)+1 种基金Ningbo University Disciplinary Project(No.XKL141038)Agilent Technologies Inc.Research Project(No.3110)
文摘This paper presents a concurrent dual-band branch-line coupler with an independently tunable center frequency. In the proposed architecture, the quarter-wavelength lines, which work at two separated bands concurrently and can be tuned in one of them, are key components. Based on the analysis of ABCD-matrix, a novel hybrid structure and a pair of varactors topology are utilized to achieve concurrent dual-band operation and independent tunability, respectively. Using this configuration, it is convenient to tune the center frequency of the upper band, while the responses of the lower band remain unaltered. To verify the proposed idea, a demonstration is implemented and the simulated results are presented.
文摘The optimization of high power terahertz monolithic integrated circuit (TMIC) is systemically studied based on the physical model of the Schottky barrier varactor (SBV) with interface defects and tunneling effect. An ultra-thin dielectric layer is added to describe the extra tunneling effect and the damping of thermionic emission current induced by the interface defects. Power consumption of the dielectric layer results in the decrease of capacitance modulation ration (Cmax/Cmin), and thus leads to poor nonlinear C–V characteristics. The proposed Schottky metal-brim (SMB) terminal structure could improve the capacitance modulation ration by reducing the influence of the interface charge and eliminating the fringing capacitance effect. Finally, a 215 GHz tripler TMIC is fabricated based on the SMB terminal structure. The output power is above 5 mW at 210–218 GHz and the maximum could exceed 10 mW at 216 GHz, which could be widely used in terahertz imaging, radiometers, and so on. This paper also provides theoretical support for the SMB structure to optimize the TMIC performance.
基金Project supported by the National Scientific Major Projects of China (Grant No. 2011ZX03004-001-02)the National Natural Science Foundation of China (Grant No. 60806024)
文摘The left-handed nonlinear transmission line (LH-NLTL) based on monolithic microwave integrated circuit (MMIC) technology possesses significant advantages such as wide frequency band, high operating frequency, high conversion efficiency, and applications in millimeter and submillimeter wave frequency multiplier. The planar Schottky varactor diode (PSVD) is a major limitation to the performance of the LH-NLTL frequency multiplier as a nonlinear component. The design and the fabrication of the diode for such an application are presented. An accurate large-signal model of the diode is proposed. A 16 GHz-39,6 GHz LH NLTL frequency doubler using our large-signal model is reported for the first time. The measured maximum output powers of the 2nd harmonic are up to 8 dBm at 26.4 GHz, and above 0 dBm from 16 GHz to 39.6 GHz when the input power is 20 dBm. The application of the LH-NLTL frequency doubler furthermore validates the accuracy of the large-signal model of the PSVD.
基金supported by the National Natural Science Foundation of China (Grant Nos. 60901029, 61172148, and 60925005)the Natural Science Foundation of Shaanxi Province, China (Grant No. 2011JQ8040)
文摘A new technique for designing a varactor-tunable frequency selective surface (FSS) with an embedded bias network is proposed and experimentally verified. The proposed FSS is based on a square-ring slot FSS. The frequency tuning is achieved by inserting varactor diodes between the square mesh and each unattached square patch. The square mesh is divided into two parts for biasing the varactor diodes. Full-wave numerical simulations show that a wide tuning range can be achieved by changing the capacitances of these loaded varactors. Two homo-type samples using fixed lumped capacitors are fabricated and measured using a standard waveguide measurement setup. Excellent agreement between the measured and simulated results is demonstrated.
基金supported by the National Natural Science Foundations of China(Grant Nos.61271250 and 11204378)
文摘In this paper, we design a varactor-tunable metamaterial absorber (MA). The tunable MA is based on a mushroom-type high impedance surface (HIS), in which varactors are loaded between adjacent metal patches to adjust the capacitance and tune the resonance frequency, the primary ground plane is etched as the bias network to bias all of the varactors in parallel, and another ultra-thin grounded film is attached to the bottom. Its absorption characteristics are realized for electrically dielectric loss. The simulated values of a sample indicate that a tunable frequency range from 2.85 GHz to 2.22 GHz is achieved by adjusting the varactor capacitance from 0.1 pF to 2.0 pF, and better than 0.97 absorbance is realized; in addition, the tunable frequency range is expanded from 4.12 GHz to 1.70 GHz after optimization.
基金Supported by the National Science and Technology Major Project of China (No. 2010ZX03007-003-04)Ningbo University - Agilent Joint Laboratory, the National Natural Science Foundation of China (No. 61171040)+5 种基金the Key Project of International Cooperation of the Provincial Science Technology Major Projects of Zhejiang (No. 2010C14007)the Provincial Natural Science Foundation of Zhejiang (No. Y1101270)the Natural Science Foundation of Ningbo (No. 2011A610188)the Scientific Research Foundation of Graduate School of Ningbo University (No. G12JA019)Scientific Research Fund of Zhejiang Provincial Education Department (No. Y201224247)Research Foundation of Ningbo University (No. XKL11D2064)
文摘This paper presents a novel electronic tuner with high power handling capability utilizing varactors based on the asymmetric bilateral coupled microstrip transmission line. Through varying the bias voltage of the varactor at the Ultra High Frequency (UHF) band, the performance of the tuner is demonstrated according to simulated and measured results from several cases with the return loss (S11 ) below -20 dB and the insertion loss (S21 ) within ±0.5 dB. Compared with tuners using p and t network, electronic tuner of this paper shows superior frequency agility as well as wide impendence coverage. Advanced biasing structure has been developed to improve power handling for high power level applications. It is expected that the novel tuner would be part of intelligent Radio Frequency (RF) front-ends system and cognitive wireless system in the future.
文摘结合国内现有的加工工艺水平,提出自偏置条件下的反向并联二极管对电路结构.不但解决了三倍频器偏置电路加工的难题,而且可以有效实现奇次倍频.同时,利用HFSS和ADS软件,以场路结合的方式准确模拟三倍频器的电特性,考虑到寄生参数引入的影响.设计完成以后,器件加工以及电装过程均在国内完成.测试结果表明在221 GHz处,有最大输出功率3.1 m W,在219~227 GHz频率范围内输出功率均大于2 m W.以上研究为今后设计高效率亚毫米波倍频器提供重要的参考价值.
文摘研制了一种基于肖特基变容二极管的0.17 THz二倍频器,该器件为0.34 THz无线通信系统收发前端提供了低相噪、低杂散的本振信号。倍频器结构基于波导腔体石英基片微带电路实现,其核心器件是多结正向并联的肖特基变容二极管。文中采用结参数模型和三维电磁模型相结合的方式对二极管进行建模,通过两种电路匹配方式实现了0.17 THz二倍频器的最优化设计,最终完成器件的加工及测试。测试结果表明,在输入80~86 GHz,20 d Bm的驱动信号下,倍频器的最大输出功率达12.21 m W,倍频效率11%,输出频点为163 GHz;当前端输入功率达到饱和状态时,该频点输出功率可达21.41 m W。