期刊文献+
共找到92篇文章
< 1 2 5 >
每页显示 20 50 100
Kinetics of Vanadium Oxidation during Bone Coal Roasting in Air 被引量:5
1
作者 郭伟 范其明 胡长平 《Rare Metals》 SCIE EI CAS CSCD 1995年第4期276-281,共6页
Based on model of unreacted nucleus the carbon oxidation in bone coal roasting in air was discussed withloss-in-weight experiment. Meanwhile the mathematic model of kinetics of low-valent vanadium oxidation waspropose... Based on model of unreacted nucleus the carbon oxidation in bone coal roasting in air was discussed withloss-in-weight experiment. Meanwhile the mathematic model of kinetics of low-valent vanadium oxidation wasproposed. The activation energies and reaction orders for multistep oxidation reactions of low-valent vanadiumwere obtained by computer data-processing. 展开更多
关键词 vanadium oxidation KINETICS Mathematic model
在线阅读 下载PDF
Enhanced Reliability and Stability of Vanadium Oxide-Based RRAM by Constructing VO_(x)/TiO_(2)/n^(++)Si p-i-n Structure
2
作者 WANG Ze ZHOU Xin +1 位作者 ASAD Khaleeq WANG Chunrui 《Journal of Donghua University(English Edition)》 2025年第3期242-250,共9页
Vanadium oxide(VO_(x))has garnered significant attention in the realm of resistive random-access memory(RRAM)owing to its outstanding resistive switching characteristics.However,the ambiguous mechanisms of resistive s... Vanadium oxide(VO_(x))has garnered significant attention in the realm of resistive random-access memory(RRAM)owing to its outstanding resistive switching characteristics.However,the ambiguous mechanisms of resistive switching and inferior stability hinder its practical applications.Herein,an RRAM named VO_(x)/TiO_(2)/n^(++)Si device is prepared.It displays bipolar resistive switching behavior and shows superior cycle endurance(>200),a significantly high on/off ratio(>10^(2))and long-term stability.The tremendous improvement in the stability of the VO_(x)/TiO_(2)/n^(++)Si device compared with the Cu/VOx/n^(++)Si device is due to the p-i-n structure of VO_(x)/TiO_(2)/n^(++)Si.The switching mechanism of the VO_(x)/TiO_(2)/n^(++)Si device is attributed to the growth and annihilation of Cu conductive filaments. 展开更多
关键词 vanadium oxide bipolar resistive switching p-i-n junction resistive random-access memory(RRAM) titanium dioxide double-layer structure
在线阅读 下载PDF
Quaternary ammonium salt additive reconstructing the electrolyte environment and layered organic vanadium oxide assisting novel Ni-ion batteries
3
作者 Xi Wang Fengyun Mao +1 位作者 Chanyu Yang Yun Gong 《Journal of Energy Chemistry》 2025年第9期797-807,I0021,共12页
Ni-ion aqueous batteries(NIBs)were considered an important development direction for aqueous batteries due to the high theoretical capacity(913 mA h g^(-1))and volume capacity(8136 mA h cm^(-3))of nickel metal.Herein,... Ni-ion aqueous batteries(NIBs)were considered an important development direction for aqueous batteries due to the high theoretical capacity(913 mA h g^(-1))and volume capacity(8136 mA h cm^(-3))of nickel metal.Herein,an electrolyte additive(dodecyl trimethyl ammonium chloride,DTAC)was used to improve the electrolyte environment,achieve efficient transport of Ni-ion,and combine the intercalated vanadium oxide cathodes to realize novel strategy NIBs.Firstly,the introduction of trace amounts of DTAC improved the high-concentration NiCl_(2)(4.2 M)electrolyte environment and reconstructed the hydrogen bond network.Molecular dynamics(MD)calculations and electrochemical results indicated that DTAC contributed to the desolvation process of Ni^(2+)and the realization of fast dynamics.The results of Ni symmetric cells demonstrated that DTAC enhanced the rapid migration of Ni-ion and achieved longer cycling stability(1750/1500 h at 0.2/0.5 mA cm^(-2)without obvious short circuits).Secondly,the insertion of organic small molecules(pyrrolidine)into vanadium oxide(V_(2)O_(5))to expand the interlayer spacing promoted the Ni-ion storage capacity of the cathodes.The capacity retention rate of Ni full battery after 6000 cycles at 5 A g^(-1)reached 82.17%.This work provided a novel strategy for the development of Ni-ion aqueous batteries. 展开更多
关键词 Layered vanadium oxides Improved electrolyte environment Ni-ion batteries Regulation of desolvation Ion-transportation
在线阅读 下载PDF
Construction of sodium-poor and oxygen defect-rich vanadium oxide nanobelts for high-performance aqueous zinc-ion batteries
4
作者 Yan-Dong Ma Hao-Nan Zhu +4 位作者 Yan Le Yong-Hang Liu Tie-Han Mei Shu-Juan Bao Mao-Wen Xu 《Rare Metals》 2025年第1期230-239,共10页
Although the enhancement of the zinc storage performance of layered vanadium oxides can be realized by the ionic pre-intercalation strategy,it also occupies a large number of active sites and thus fails to release the... Although the enhancement of the zinc storage performance of layered vanadium oxides can be realized by the ionic pre-intercalation strategy,it also occupies a large number of active sites and thus fails to release the full potential of vanadium oxides.Here,vanadium oxide nanobelts with sodium-poor and oxygen defect-rich were constructed by regulating the content of pre-embedded sodium ions to strike a balance between pre-embedded ions and structural stability.The introduction of trace sodium ions not only increases the spacing of vanadium oxide layers but also occupies as few active sites as possible,which provides the possibility of massive storage,rapid diffusion and stabilization of the host structure for zinc ions.Moreover,the abundant oxygen defects transform the ion transport pathway from two-dimensional to three-dimensional,which greatly improves the ion transport rate in the host phase.Due to these advantages,the synthesized vanadium oxide nanobelts exhibit remarkable electrochemical properties,and this work provides a new idea for the design of structurally stable layered vanadium oxides with excellent properties. 展开更多
关键词 Oxygen defect-rich Aqueous zinc-ion batteries vanadium oxide Electrochemical kinetics Zinc storage mechanism
原文传递
Insight Into Pre-Intercalation of Layered Vanadium Oxide Cathodes:From Precise Control of the Interspace to Related Electrochemical Performance and Beyond
5
作者 Zhangxiang Hao Jian Wang +4 位作者 Junrun Feng Yameng Fan Jian Peng Jiazhao Wang Shixue Dou 《Carbon Energy》 2025年第4期91-109,共19页
Pre-intercalation is the mainstream approach to inhibit the unpredicted structural degradation and the sluggish kinetics of Zn-ions migrating in vanadium oxide cathode of aqueous zinc-ion batteries(AZIBs),which has be... Pre-intercalation is the mainstream approach to inhibit the unpredicted structural degradation and the sluggish kinetics of Zn-ions migrating in vanadium oxide cathode of aqueous zinc-ion batteries(AZIBs),which has been extensively explored over the past 5 years.The functional principles behind the improvement are widely discussed but have been limited to the enlargement of interspace between VO layers.As the different types of ions could change the properties of vanadium oxides in various ways,the review starts with a comprehensive overview of pre-intercalated vanadium oxide cathode with different types of molecules and ions,such as metal ions,water molecules,and non-metallic cations,along with their functional principles and resulting performance.Furthermore,the pre-intercalated vanadium cathodes reported so far are summarized,comparing their interlayer space,capacity,cycling rate,and capacity retention after long cycling.A discussion of the relationship between the interspace and the performance is provided.The widest interspaces could result in the decay of the cycling stability.Based on the data,the optimal interspace is likely to be around 12?indicating that precise control of the interspace is a useful method.However,more consideration is required regarding the other impacts of pre-intercalated ions on vanadium oxide.It is hoped that this review can inspire further understanding of pre-intercalated vanadium oxide cathodes,paving a new pathway to the development of advanced vanadium oxide cathodes with better cycling stability and larger energy density. 展开更多
关键词 energy storage system pre-intercalated cathode vanadium oxides Zn‐ion battery
在线阅读 下载PDF
CeO_2-supported vanadium oxide catalysts for soot oxidation:the roles of molecular structure and nanometer effect 被引量:5
6
作者 刘坚 赵震 +2 位作者 徐春明 段爱军 姜桂元 《Journal of Rare Earths》 SCIE EI CAS CSCD 2010年第2期198-204,共7页
The nanometer CeO2 powder was prepared by the method of microwave-assisted heating hydrolysis,and the nanometer CeO2-supported or ordinary CeO2-supported vanadia catalysts with different vanadium loadings(atomic ratio... The nanometer CeO2 powder was prepared by the method of microwave-assisted heating hydrolysis,and the nanometer CeO2-supported or ordinary CeO2-supported vanadia catalysts with different vanadium loadings(atomic ratios:100V/Ce=0.1,1,4,10,and 20) were prepared by an incipient-wetness impregnation method.Spectroscopic techniques(XRD,FT-IR,Raman and UV-Vis DRS) were utilized to characterize the structures of VOx/CeO2 catalysts.The results showed that the structures of CeO2-supported vanadium oxide catalysts de... 展开更多
关键词 vanadium oxide catalyst CEO2 NANOMETER SOOT combustion rare earths
原文传递
Mass Spectrometric Studies of Selective Oxidation of n-Butane over a Vanadium Phosphorus Oxide Catalyst 被引量:2
7
作者 陈标华 黄晓峰 +2 位作者 李成岳 梁日忠 赵邦蓉 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2002年第2期177-182,共6页
The selective oxidation of n-butane to maleic anhydride (MA) on a vanadium-phosphorus oxide (VPO) catalyst was studied using on-line gas-chromatography combined with mass spectrometry(GC-MS) and transient response tec... The selective oxidation of n-butane to maleic anhydride (MA) on a vanadium-phosphorus oxide (VPO) catalyst was studied using on-line gas-chromatography combined with mass spectrometry(GC-MS) and transient response technique. The reaction intermediates, buterie and furan, were found in the reaction effluent under near industrial feed condition (3% butane+15%O2), while dihydrofuran was detected at high butane concentration (12% butane, 5%O2). Some intermediates of MA decomposition were also identified. Detection of these intermediates shows that the vanadium phosphorus oxides are able to dehydrogenate butane to butene, and butene further to form MA. Based on these observations, a modified scheme of reaction network is proposed. The transient experiments show that butane in the gas phase may directly react with oxygen both on the surface and from the metal oxide lattice, without a proceeding adsorption step. Gas phase oxygen can be adsorbed and transformed to surface lattice oxygen but it can not participate in selective oxidation. Adsorbed oxygen leads to deep oxidation, while lattice oxygen leads to selective oxidation. 展开更多
关键词 n-butane selective oxidation vanadium phosphorus oxide catalyst mass spectrometer reaction in- termediates transient response
在线阅读 下载PDF
Progress of vanadium phosphorous oxide catalyst for n-butane selective oxidation 被引量:2
8
作者 Muhammad Faizan Yingwei Li +3 位作者 Ruirui Zhang Xingsheng Wang Piao Song Ruixia Liu 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2022年第3期297-315,共19页
The utilization of lighter alkanes into useful chemical products is essential for modern chemistry and reducing the CO_(2)emission.Particularly,n-butane has gained special attention across the globe due to the abundan... The utilization of lighter alkanes into useful chemical products is essential for modern chemistry and reducing the CO_(2)emission.Particularly,n-butane has gained special attention across the globe due to the abundant production of maleic anhydride(MA).Vanadium phosphorous oxide(VPO)is the most effective catalyst for selective oxidation of n-butane to MA so far.Interestingly,the VPO complex exists in more or less fifteen different structures,each one having distinct phase composition and exclusive surface morphology and physiochemical properties such as valence state,lattice oxygen,acidity etc.,which relies on precursor preparation method and the activation conditions of catalysts.The catalytic performance of VPO catalyst is improved by adding different promoters or co-catalyst such as various metals dopants,or either introducing template or structural-directing agents.Meanwhile,new preparation strategies such as electrospinning,ball milling,hydrothermal,barothermal,ultrasound,microwave irradiation,calcination,sol-gel method and solvothermal synthesis are also employed for introducing improvement in catalytic performance.Research in above-mentioned different aspects will be ascribed in current review in addition to summarizing overall catalysis activity and final yield.To analyze the performance of the catalytic precursor,the reaction mechanism and reaction kinetics both are discussed in this review to help clarify the key issues such as strong exothermic reaction,phosphorus supplement,water supplement,deactivation,and air/n-butane pretreatment etc.related to the various industrial applications of VPO. 展开更多
关键词 N-butane selective oxidation oxidation of light alkanes vanadium phosphorus oxide(VPO) Maleic anhydride
在线阅读 下载PDF
Weakly Polarized Organic Cation-Modified Hydrated Vanadium Oxides for High-Energy Efficiency Aqueous Zinc-Ion Batteries 被引量:2
9
作者 Xiaoxiao Jia Chaofeng Liu +2 位作者 Zhi Wang Di Huang Guozhong Cao 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第7期169-186,共18页
Vanadium oxides,par-ticularly hydrated forms like V_(2)O_(5)·nH_(2)O(VOH),stand out as promising cathode candidates for aqueous zinc ion batteries due to their adjustable layered structure,unique electronic chara... Vanadium oxides,par-ticularly hydrated forms like V_(2)O_(5)·nH_(2)O(VOH),stand out as promising cathode candidates for aqueous zinc ion batteries due to their adjustable layered structure,unique electronic characteristics,and high theoretical capacities.However,challenges such as vanadium dissolution,sluggish Zn^(2+)diffusion kinetics,and low operating voltage still hinder their direct application.In this study,we present a novel vanadium oxide([C_(6)H_(6)N(CH_(3))_(3)]_(1.08)V_(8)O_(20)·0.06H_(2)O,TMPA-VOH),developed by pre-inserting trimethylphenylammonium(TMPA+)cations into VOH.The incorporation of weakly polarized organic cations capitalizes on both ionic pre-intercalation and molecular pre-intercalation effects,resulting in a phase and morphology transition,an expansion of the interlayer distance,extrusion of weakly bonded interlayer water,and a substantial increase in V^(4+)content.These modifications synergistically reduce the electrostatic interactions between Zn^(2+)and the V-O lattice,enhancing structural stability and reaction kinetics during cycling.As a result,TMPA-VOH achieves an elevated open circuit voltage and operation voltage,exhibits a large specific capacity(451 mAh g^(-1)at 0.1 A g^(-1))coupled with high energy efficiency(89%),the significantly-reduced battery polarization,and outstanding rate capability and cycling stability.The concept introduced in this study holds great promise for the development of high-performance oxide-based energy storage materials. 展开更多
关键词 Zinc-ion battery vanadium oxide V_(2)O_(5)·nH_(2)O Pre-intercalation Interlayer engineering
在线阅读 下载PDF
MIL-100(V) derived porous vanadium oxide/carbon microspheres with oxygen defects and intercalated water molecules as high-performance cathode for aqueous zinc ion battery 被引量:1
10
作者 Yuexin Liu Jian Huang +3 位作者 Xiaoyu Li Jiajia Li Jinhu Yang Kefeng Cai 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第3期578-589,I0013,共13页
The development of aqueous zinc ion battery cathode materials with high capacity and high magnification is still a challenge.Herein,porous vanadium oxide/carbon(p-VO_(x)@C,mainly VO_(2) with a small amount of V_(2)O_(... The development of aqueous zinc ion battery cathode materials with high capacity and high magnification is still a challenge.Herein,porous vanadium oxide/carbon(p-VO_(x)@C,mainly VO_(2) with a small amount of V_(2)O_(3)) core/shell microspheres with oxygen vacancies are facilely fabricated by using a vanadium-based metal-organic framework(MIL-100(V)) as a sacrificial template.This unique structure can improve the conductivity of the VO_(x),accelerate electrolyte diffusion,and suppress structural collapse during circulation.Subsequently,H_(2)O molecules are introduced into the interlayer of VO_(x) through a highly efficient in-situ electrochemical activation process,facilitating the intercalation and diffusion of zinc ions.After the activation,an optimal sample exhibits a high specific capacity of 464.3 mA h g^(-1) at0.2 A g^(-1) and 395.2 mA h g^(-1) at 10 A g^(-1),indicating excellent rate performance.Moreover,the optimal sample maintains a capacity retention of about 89.3% after 2500 cycles at 10 A g^(-1).Density functional theory calculation demonstrates that the presence of oxygen vacancies and intercalated water molecules can significantly reduce the diffusion barrier for zinc ions.In addition,it is proved that the storage of zinc ions in the cathode is achieved by reversible intercalation/extraction during the charge and discharge process through various ex-situ analysis technologies.This work demonstrates that the p-VO_(x)@C has great potential for applications in aqueous ZIBs after electrochemical activation. 展开更多
关键词 Metal-organic frameworks vanadium oxide Carbon Zn-ion batteries Electrochemical activation
在线阅读 下载PDF
Revealing the role of calcium ion intercalation of hydrated vanadium oxides for aqueous zinc-ion batteries 被引量:1
11
作者 Tao Zhou Xuan Du Guo Gao 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第8期9-19,I0001,共12页
Exploring suitable high-capacity V_(2)O_(5)-based cathode materials is essential for the rapid advancement of aqueous zinc ion batteries(ZIBs).However,the typical problem of slow Zn^(2+)diffusion kinetics has severely... Exploring suitable high-capacity V_(2)O_(5)-based cathode materials is essential for the rapid advancement of aqueous zinc ion batteries(ZIBs).However,the typical problem of slow Zn^(2+)diffusion kinetics has severely limited the feasibility of such materials.In this work,unique hydrated vanadates(CaVO,BaVO)were obtained by intercalation of Ca^(2+)or Ba^(2+)into hydrated vanadium pentoxide.In the CaVO//Zn and BaVO//Zn batteries systems,the former delivered up to a 489.8 mAh g^(-1)discharge specific capacity at 0.1 A g^(-1).Moreover,the remarkable energy density of 370.07 Wh kg^(-1)and favorable cycling stability yard outperform BaVO,pure V_(2)O_(5),and many reported cathodes of similar ionic intercalation compounds.In addition,pseudocapacitance analysis,galvanostatic intermittent titration(GITT)tests,and Trasatti analysis revealed the high capacitance contribution and Zn^(2+)diffusion coefficient of CaVO,while an in-depth investigation based on EIS elucidated the reasons for the better electrochemical performance of CaVO.Notably,ex-situ XRD,XPS,and TEM tests further demonstrated the Zn^(2+)insertion/extraction and Zn-storage mechanism that occurred during the cycle in the CaVO//Zn battery system.This work provides new insights into the intercalation of similar divalent cations in vanadium oxides and offers new solutions for designing cathodes for high-capacity aqueous ZIBs. 展开更多
关键词 Aqueous zinc ion batteries Cathode materials Ion pre-intercalation vanadium oxides Energy storage mechanism
在线阅读 下载PDF
An Imidazole-functionalized Dioxovanadium Complex with the Highly Selective Oxidation of Sulfides
12
作者 蒋秀燕 荣念新 +2 位作者 王国栋 崔传生 黄现强 《Chinese Journal of Structural Chemistry》 SCIE CAS CSCD 2017年第3期429-437,共9页
A novel imidazole-functionalized dioxovanadium complex [V2O2(C2O4)(aIM)4] (aIM =1-allylimidazole) was synthesized by the reaction of VO(acac)2 with 1-allylimidazole and fully characterized by single-crystal X-... A novel imidazole-functionalized dioxovanadium complex [V2O2(C2O4)(aIM)4] (aIM =1-allylimidazole) was synthesized by the reaction of VO(acac)2 with 1-allylimidazole and fully characterized by single-crystal X-ray diffraction (SCXRD),powder X-ray diffraction (PXRD),X-ray photoelectron spectroscopy (XPS),Fourier transform infrared spectroscopy (FT-IR) and elemental analyses.Interestingly,the oxalate was in-situ generated from the acetylacetone anion of VO(acac)2 and further coordinated with the vanadium cation and finally complex 1 was achieved.The crystal of complex 1 belongs to the monoclinic system,space group P21/n with a =10.7922(9),b =10.6296(8),c =13.2936(11) (A),μ =0.677 mm^-1,Mr =686.48,V =1516.9(2) A^3,Z =2,Dc =1.503 g/cm^3,F(000) =708,R =0.0543,and wR =0.1517 for 2459 observed reflections with Ⅰ 〉 2σ(Ⅰ).Notably,complex 1 is further used as catalyst in the oxidation of sulfides using H2O2 as the oxidant and exhibits excellent catalytic performance (conv.up to 95.6%,sele.up to 98.9%). 展开更多
关键词 vanadium complex crystal structure oxidation of sulfides
在线阅读 下载PDF
Synergism of preintercalated manganese ions and lattice water in vanadium oxide cathodes for high-capacity and long-life Zn-ion batteries
13
作者 Mengjing Wu Rongrong Li +3 位作者 Kai Yang Lijiang Yin Weikang Hu Xiong Pu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第9期709-717,共9页
Aqueous Zn-ion batteries(AZIBs)are recognized as a promising energy storage system with intrinsic safety and low cost,but its applications still rely on the design of high-capacity and stable-cycling cathode materials... Aqueous Zn-ion batteries(AZIBs)are recognized as a promising energy storage system with intrinsic safety and low cost,but its applications still rely on the design of high-capacity and stable-cycling cathode materials.In this work,we present an intercalation mechanism-based cathode materials for AZIB,i.e.the vanadium oxide with pre-intercalated manganese ions and lattice water(noted as MVOH).The synergistic effect between Mn^(2+)and lattice H_(2)O not only expands the interlayer spacing,but also significantly enhances the structural stability.Systematic in-situ and ex-situ characterizations clarify the Zn^(2+)/H^(+)co–(de)intercalation mechanism of MVOH in aqueous electrolyte.The demonstrated remarkable structure stability,excellent kinetic behaviors and ion-storage mechanism together enable the MVOH to demonstrate satisfactory specific capacity of 450 mA h g^(−1)at 0.2 A g^(−1),excellent rate performance of 288.8 mA h g^(−1)at 10 A g^(−1)and long cycle life over 20,000 cycles at 5 A g^(−1).This work provides a practical cathode material,and contributes to the understanding of the ion-intercalation mechanism and structural evolution of the vanadium-based cathode for AZIBs. 展开更多
关键词 Zn-ion batteries vanadium oxide Pre-intercalation Lattice water Manganese ion
在线阅读 下载PDF
Constructing highly safe and long-life calcium ion batteries based on hydratedvanadium oxide cathodes featuring a pillar structure
14
作者 Chun-Fang Wang Shi-Wei Zhang +6 位作者 Lan Huang Yuan-Min Zhu Feng Liu Jian-Chuan Wang Li-Ming Tan Chun-Yi Zhi Cui-Ping Han 《Rare Metals》 SCIE EI CAS CSCD 2024年第6期2597-2612,共16页
Calcium-ion batteries(CIBs)have generated intense interest due to the growing demand for safer,cheaper,and large-scale energy storage systems.However,their development is still in its infancy,owing to the lack of suit... Calcium-ion batteries(CIBs)have generated intense interest due to the growing demand for safer,cheaper,and large-scale energy storage systems.However,their development is still in its infancy,owing to the lack of suitable cathodes for sustaining reversiblc Ca^(2+)intercalation/deintercalation.Herein,layered H_(2)V_(3)O_(8)(HVO)with Zn^(2+)pre-insertion(ZHVO)is reported as a high-rate and highly durable cathode material for CIBs.The existence of Zn^(2+)and H_(2)O pillars could expand the interlayer spacing up to 1.8 nm,which is favorable for the diffusion of bulky Ca^(2+).The formation of Zn-O bonds facilitates electron transfer and enhances electrical conduction.Consequently,the ZHVO cathode achieves superior capacity performance(213.9 mAh·g^(-1)at 0.2 A·g^(-1))and long lifespan(78.3%for 1,000 cycles at 5 A·g^(-1))compared to pristine HVO.Density functional theory(DFT)calculations revealed that Zn^(2+)moved during Ca^(2+)intercalation,thereby reducing the diffusion energy barrier and facilitating Ca^(2+)diffusion.Finally,a safe aqueous calcium ion cell was successfully assembled. 展开更多
关键词 Multivalent batteries Calcium-ion batteries Layered structure vanadium oxide Cathode materials
原文传递
Synchronous regulation of V_(2)O_(5) cathode and Zn anode using sodium gluconate as an additive for long-life aqueous zinc-ion batteries 被引量:1
15
作者 Rongkun Sun Dan Luo +5 位作者 Hongyang Zhou Zhaolong Zhang Yinuo Gao Siyuan Ma Zhi Li Xiaohong Kang 《Journal of Energy Chemistry》 2025年第4期703-713,共11页
Aqueous zinc-ion batteries(AZIBs)are gaining attention owing to their affordability,high safety,and high energy density,making them a promising solution for large-scale energy storage.However,their performance is hamp... Aqueous zinc-ion batteries(AZIBs)are gaining attention owing to their affordability,high safety,and high energy density,making them a promising solution for large-scale energy storage.However,their performance is hampered by the instability of both the anode-electrolyte interface and the cathode-electrolyte interface.The use of sodium gluconate(SG),an organic sodium salt with multiple hydroxyl groups,as an electrolyte additive is suggested.Experimental and theoretical analyses demonstrate that Na^(+)from SG can intercalate and deintercalate within the associated V_(2)O_(5) cathode during in situ electrochemical processes.This action supports the layered structure of V_(2)O_(5),prevents structural collapse and phase transitions,and enhances Zn^(2+)diffusion kinetics.Additionally,the gluconate anion disrupts the original Zn^(2+)solvation structure,mitigates water-induced side reactions,and suppresses Zn dendrite growth.The synchronous regulation of both the V_(2)O_(5) cathode and Zn anode by the SG additive leads to considerable performance improvements.Zn‖Zn symmetric batteries demonstrate a cycle life exceeding 2800 h at 0.5 mA cm^(-2)and 1 mAh cm^(-2).In Zn‖V_(2)O_(5) full batteries,a high specific capacity of 288.92 mAh g^(-1)and capacity retention of 82.29%are maintained over 1000 cycles at a current density of 2 A g^(-1).This multifunctional additive strategy offers a new pathway for the practical application of AZIBs. 展开更多
关键词 Aqueous zinc-ion batteries Sodium gluconate vanadium oxides Zn anode Cycling stability High specific capacity
在线阅读 下载PDF
Sr^(2+)and choline chloride cointercalation in V_(2)O_(5) for aqueous zinc-ion batteries
16
作者 Shiyuan Chen Yongchun Zhu 《中国科学技术大学学报》 北大核心 2025年第3期20-26,19,I0001,共9页
V_(2)O_(5)·nH_(2)O has been widely studied for aqueous zinc-ion batteries.The intercalation of inorganic ions has been used as a feasible method to improve the capacity of vanadium pentoxide.To further improve th... V_(2)O_(5)·nH_(2)O has been widely studied for aqueous zinc-ion batteries.The intercalation of inorganic ions has been used as a feasible method to improve the capacity of vanadium pentoxide.To further improve the stability,organic small molecule choline chloride intercalation is used to expand the spacing of the vanadium pentoxide layers and increase the cycling stability.Therefore,we consider the introduction of Sr^(2+)to cointercalate with choline chloride.Here,we synthes-ized vanadium pentoxide cointercalated with Sr^(2+)and choline ions(Ch^(+))via a simple hydrothermal method.The electro-chemical performance shows an enhanced cathode capacitance contribution of Sr&Ch-V_(2)O_(5),with a discharge capacity of 526 mAh·g^(-1)at 0.1 A·g^(-1)and a retention rate of 78.9%after 2000 cycles at 5 A·g^(-1).This work offers a novel strategy for the design of organic‒inorganic hybrid materials for use as cathodes in aqueous zinc-ion batteries. 展开更多
关键词 aqueous Zn-ion batteries vanadium oxides ion intercalation
在线阅读 下载PDF
Anisotropy of V_(3)O_(7) nanobelts enables ultralong cycling life of magnesium ion battery
17
作者 Xiu-Fen Ma Hong-Yi Li +7 位作者 Jing Tan Jinan Wang Jiang Diao Jili Yue Shuangshuang Tan Guangsheng Huang Jingfeng Wang Fusheng Pan 《Journal of Magnesium and Alloys》 2025年第4期1592-1601,共10页
Magnesium ion batteries(MIBs)are a promising alternative to lithium-ion batteries,which suffer from the short cycling life and sluggish Mg^(2+)diffusion kinetics of cathodes.Nano morphologies are used to shorten Mg^(2... Magnesium ion batteries(MIBs)are a promising alternative to lithium-ion batteries,which suffer from the short cycling life and sluggish Mg^(2+)diffusion kinetics of cathodes.Nano morphologies are used to shorten Mg^(2+)diffusion path for diffusion kinetics acceleration,but the cycling life is still unsatisfactory.Herein,the anisotropy of layered V_(3)O_(7)·1.9H_(2)O nanobelts is utilized to stabilize their structure during discharging/charging.The V_(3)O_(7)·1.9H_(2)O nanobelts grow along the preponderant migration direction of Mg^(2+),and the resulted axial migration of Mg^(2+)enables the stress caused by Mg^(2+)insertion to be decentralized in large zone,thus improving the cycling stability of V_(3)O_(7)·1.9H_(2)O nanobelts.The inserted Mg^(2+)cations bond with O atoms in adjacent V3O8 layers of V_(3)O_(7)·1.9H_(2)O,further stablizing the layered structure.Meanwhile,the axial migration of Mg^(2+)significantly reduces the charge transfer resistance at electrode/electrolyte interface,which accelerates the Mg^(2+)diffusion kinetics.Thus,the symmetric RMB assembled from V_(3)O_(7)·1.9H_(2)O nanobelts exhibits an ultralong cycling life of 11,000 cycles at 4 A g^(-1),alongside a high specific capacity of 137 mAh g^(-1)at 0.05 A g^(-1).According to our knowledge,this ultralong cycling life surpasses those of reported full RMBs.This strategy provides insight into the design of cathode materials with improved cycling lives. 展开更多
关键词 ANISOTROPY NANOBELTS Cycling life vanadium oxide Aqueous magnesium ion batteries
在线阅读 下载PDF
Electrostatic adsorption driven self-assembly of V_(2)O_(5)·4VO_(2)nanoribbons and MXene for fast and stable Zn^(2+)storage
18
作者 Meng-Xuan Zhou Shu-Chao Zhang +6 位作者 Zheng-Guang Zou Min Chen Zhi-Hong Luo Fang-An Liang Xi-Yuan Zhong Sheng-Kun Jia Wang-Ji Zhang 《Rare Metals》 2025年第2期938-949,共12页
Aqueous zinc ion batteries have become highly favored energy storage devices owing to low cost and environmental friendliness.Vanadium oxide,as one of the potential cathodes for AZIBs,is plagued by several unfavorable... Aqueous zinc ion batteries have become highly favored energy storage devices owing to low cost and environmental friendliness.Vanadium oxide,as one of the potential cathodes for AZIBs,is plagued by several unfavorable elements including unsatisfactory conductivity and vanadium dissolution in the electrolyte.Herein,an electrostatic self-assembly strategy is proposed to introduce conductive dielectric Ti_(3)C_(2)T_(x)MXene nanoplates into V_(2)O_(5)·4VO_(2)nanoribbons,where V_(2)O_(5)·4VO_(2)/MXene composites(denoted as VM2)are simply obtained by magnetic stirring combined with ultrasonic method at room temperature.The successful introduction of MXene with high electrical conductivity not only endows faster V_(2)O_(5)·4VO_(2)electron/ion transfer,but also acts as a"baffle"to inhibit vanadium dissolution.Benefiting from the above advantages,paired with a zinc metal anode,VM2 cathode exhibits impressive performance metrics of 328.7 mAh·g^(−1)at 0.1 A·g^(−1),95.8%capacity retention after 1000 cycles,and 142.9 mAh·g^(−1)at a current density of 20 A·g^(−1).This work provides a viable reference for the development of high-performance AZIBs. 展开更多
关键词 Zinc ion batteries vanadium oxide Ti_(3)C_(2)T_(x)MXene Electrostatic adsorption Electrochemical properties
原文传递
Comparison of the mechanisms of microwave roasting and conventional roasting and of their effects on vanadium extraction from stone coal 被引量:4
19
作者 Yi-zhong Yuan Yi-min Zhang +1 位作者 Tao Liu Tie-jun Chen 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2015年第5期476-482,共7页
Experiments comparing microwave blank roasting and conventional blank roasting for typical vanadium-bearing stone coal from Hubei Province in central China, in which vanadium is present in muscovite, were conducted to... Experiments comparing microwave blank roasting and conventional blank roasting for typical vanadium-bearing stone coal from Hubei Province in central China, in which vanadium is present in muscovite, were conducted to investigate the effects of roasting tempera- ture, roasting time, H2SO4 concentration, and leaching time on vanadium extraction. The results show that the vanadium leaching efficiency is 84% when the sample is roasted at 800℃ for 30 min by microwave irradiation and the H2SO4 concentration, liquid/solid ratio, leaching temperature, and leaching time are set as 20vo1%, 1.5:1 mL.g-1, 95℃, and 8 h, respectively. However, the vanadium leaching efficiency achieved for the sample subjected to conventional roasting at 900℃ for 60 min is just 71% under the same leaching conditions. Scanning electron microscopy (SEM) analysis shows that the microwave roasted samples contain more cracks and that the particles are more porous compared to the conventionally roasted samples. According to the results of X-ray diffraction (XRD) and Fourier-transform infrared (FTIR) analyses, neither of these roasting methods could completely destroy the mica lattice structure under the experimental conditions; however, both methods deformed the muscovite structure and facilitated the leaching process. Comparing with conventional roasting, microwave roasting causes a greater deformation of the mineral structure at a lower temperature for a shorter roasting time. 展开更多
关键词 vanadium metallurgy extraction stone coal microwave roasting LEACHING vanadium oxides
在线阅读 下载PDF
Quest for carbon and vanadium oxide based rechargeable magnesium-ion batteries 被引量:6
20
作者 Muhammad Rashad Muhammad Asif +4 位作者 Iftikhar Ahmed Zhen He Li Yin Zhou Xiao Wei Yuxin Wang 《Journal of Magnesium and Alloys》 SCIE 2020年第2期364-373,共10页
Rechargeable magnesium ion batteries are potential candidates to replace the lithium ion batteries due to their high volumetric energy density,dendrite free cycling,and low costs.In present work,we have critically rev... Rechargeable magnesium ion batteries are potential candidates to replace the lithium ion batteries due to their high volumetric energy density,dendrite free cycling,and low costs.In present work,we have critically reviewed the recent advances made in the field of cathode materials development to achieve the high reversible capacities and working potentials.In first part,carbon-based cathodes such as fluorinedoped graphene nanosheets and graphite fluoride(CF0.8)are discussed in terms of compatibilities of pos让ive electrode materials and electrolyte solutions for rechargeable magnesium-ion batteries.Whereas,the second part of this review focuses on crystal structure of vanadium oxide and its capability to accommodate the Mg^2+ions.Likewise,electrochemical performance of selected vanadium oxide based cathodes including VO2(B),FeVO4.0.9H2(X Mc)2.5+yVO9+δ,RFC/V2O5 and V2O5/Graphene composite,are discussed at different temperatures.To support the future research on magnesium ion batteries,particularly positive electrode material developments,several innovative research directions are proposed. 展开更多
关键词 Magnesium-ion battery Energy storage Cathode materials Electrolytes vanadium oxide Electrochemical properties
在线阅读 下载PDF
上一页 1 2 5 下一页 到第
使用帮助 返回顶部