To solve the receding horizon control (RHC) problem in an online manner, a novel numerical method called the indirect Radau pseudospectral method (IRPM) is proposed in this paper. Based on calculus of variations a...To solve the receding horizon control (RHC) problem in an online manner, a novel numerical method called the indirect Radau pseudospectral method (IRPM) is proposed in this paper. Based on calculus of variations and the first-order necessary optimality condition, the RHC problem for linear time-varying (LTV) system is transformed into the two-point boundary value problem (TPBVP). The Radau pseudospectral approximation is employed to discretize the TPBVP into well-posed linear algebraic equations. The resulting linear algebraic equations are solved via a matrix partitioning approach afterwards to obtain the optimal feedback control law. For the nonlinear system, the linearization method or the quasi linearization method is employed to approximate the RHC problem with successive linear approximations. Subsequently, each linear problem is solved via the similar method which is used to solve the RHC problem for LTV system. Simulation results of three examples show that the IRPM is of high accuracy and of high compu- tation efficiency to solve the RHC problem and the stability of closed-loop systems is guaranteed.展开更多
In this paper, the author discusses the multiple positive solutions for an infinite boundary value problem of first order impulsive singular integro-differential equations on the half line by means of the fixed point ...In this paper, the author discusses the multiple positive solutions for an infinite boundary value problem of first order impulsive singular integro-differential equations on the half line by means of the fixed point theorem of cone expansion and compression with norm type.展开更多
The Riemann boundary value problem with square roots in class h0 when the jumping curve is an open arc in the complex plane is considered. It is solved by reducing it to a classical Riemann boundary value problem so t...The Riemann boundary value problem with square roots in class h0 when the jumping curve is an open arc in the complex plane is considered. It is solved by reducing it to a classical Riemann boundary value problem so that its solutions are obtained in closed form. In certain cases, some auxiliary function ω(z)is introduced. With different choices of ω(z)'s, some interesting examples are illustrated.展开更多
基金supported by the National Natural Science Foundation of China(Nos.61174221 and 61402039)
文摘To solve the receding horizon control (RHC) problem in an online manner, a novel numerical method called the indirect Radau pseudospectral method (IRPM) is proposed in this paper. Based on calculus of variations and the first-order necessary optimality condition, the RHC problem for linear time-varying (LTV) system is transformed into the two-point boundary value problem (TPBVP). The Radau pseudospectral approximation is employed to discretize the TPBVP into well-posed linear algebraic equations. The resulting linear algebraic equations are solved via a matrix partitioning approach afterwards to obtain the optimal feedback control law. For the nonlinear system, the linearization method or the quasi linearization method is employed to approximate the RHC problem with successive linear approximations. Subsequently, each linear problem is solved via the similar method which is used to solve the RHC problem for LTV system. Simulation results of three examples show that the IRPM is of high accuracy and of high compu- tation efficiency to solve the RHC problem and the stability of closed-loop systems is guaranteed.
基金supported by the National Nature Science Foundation of China (10671167)
文摘In this paper, the author discusses the multiple positive solutions for an infinite boundary value problem of first order impulsive singular integro-differential equations on the half line by means of the fixed point theorem of cone expansion and compression with norm type.
基金Supported by the National Natural Science Foundation of China (10161009)
文摘The Riemann boundary value problem with square roots in class h0 when the jumping curve is an open arc in the complex plane is considered. It is solved by reducing it to a classical Riemann boundary value problem so that its solutions are obtained in closed form. In certain cases, some auxiliary function ω(z)is introduced. With different choices of ω(z)'s, some interesting examples are illustrated.