As the problem of surface garbage pollution becomes more serious,it is necessary to improve the efficiency of garbage inspection and picking rather than traditional manual methods.Due to lightness,Unmanned Aerial Vehi...As the problem of surface garbage pollution becomes more serious,it is necessary to improve the efficiency of garbage inspection and picking rather than traditional manual methods.Due to lightness,Unmanned Aerial Vehicles(UAVs)can traverse the entire water surface in a short time through their flight field of view.In addition,Unmanned Surface Vessels(USVs)can provide battery replacement and pick up garbage.In this paper,we innovatively establish a system framework for the collaboration between UAV and USVs,and develop an automatic water cleaning strategy.First,on the basis of the partition principle,we propose a collaborative coverage path algorithm based on UAV off-site takeoff and landing to achieve global inspection.Second,we design a task scheduling and assignment algorithm for USVs to balance the garbage loads based on the particle swarm optimization algorithm.Finally,based on the swarm intelligence algorithm,we also design an autonomous obstacle avoidance path planning algorithm for USVs to realize autonomous navigation and collaborative cleaning.The system can simultaneously perform inspection and clearance tasks under certain constraints.The simulation results show that the proposed algorithms have higher generality and flexibility while effectively improving computational efficiency and reducing actual cleaning costs compared with other schemes.展开更多
Modern defense systems are developing towards systematization.intellectualization and automation,which include the collaborative defense system on the sea between multiple unmanned surface vehicles(USVs)and unmanned a...Modern defense systems are developing towards systematization.intellectualization and automation,which include the collaborative defense system on the sea between multiple unmanned surface vehicles(USVs)and unmanned aerial vehicles(UAVs).UAVs can fly in high altitude and collect marine environment information on patrolling.Furthermore,UAVs can plan defense paths for USVs to intercept intruders with full-assignment or reassignment strategies aiming at maximum overall benefits.Thus,we propose dynamic overlay reconnaissance algor计hm based on genetic idea(GI-DORA)to solve the problem of multi-UAV multi-station reconnaissance.Moreover,we develop continuous particle swarm optimization based on obstaele dimension(OD-CPSO)to optimize defense path of USVs to intercept intruders.In addition,under the designed defense constraints,we propose dispersed particle swarm optimization based on mutation and crossover(MC-DPSO)and real-time batch assignment algorithm(RTBA)in emergency for formulating combat defense mission assignment strategy in different scenarios.Finally,we illus trate the feasibility and effectiveness of the proposed met hods.展开更多
In recent years, because of the development of marine military science technology, there is a growing interest in the unmanned systems throughout the world. Also, the demand of Unmanned Surface Vehicles (USVs) which c...In recent years, because of the development of marine military science technology, there is a growing interest in the unmanned systems throughout the world. Also, the demand of Unmanned Surface Vehicles (USVs) which can be autonomously operated without the operator intervention is increasing dramatically. The growing interests lie in the facts that those USVs can be manufactured at much lower costs, and can be operated without the human fatigue, while can be sent to the hostile or quite dangerous areas that are inherently unhealthy for human operators. The utilization and the deployment of such vessels will continue to grow in the future. In this paper, along with the technological development of unmanned surface vehicles, we investigate and analyze the cases of already developed platforms and identify the trends of the technological advances. Additionally, we suggest the future directions of development.展开更多
In this paper,the formation control problem is investigated for a team of uncertain underactuated surface vessels(USVs)based on a directed graph.Considering the risk of collision and the limited communication range of...In this paper,the formation control problem is investigated for a team of uncertain underactuated surface vessels(USVs)based on a directed graph.Considering the risk of collision and the limited communication range of USVs,the prescribed performance control(PPC)methodology is employed to ensure collision avoidance and connectivity maintenance.An event-triggered mechanism is designed to reasonably use the limited communication resources.Moreover,neural networks(NNs)and an auxiliary variable are constructed to deal with the problems of uncertain nonlinearities and underactuation,respectively.Then,an event-triggered formation control scheme is proposed to ensure that all signals of the closed-loop system are uniformly ultimately bounded(UUB).Finally,simulation results are presented to demonstrate the effectiveness of the proposed control scheme.展开更多
During the use of robotics in applications such as antiterrorism or combat,a motion-constrained pursuer vehicle,such as a Dubins unmanned surface vehicle(USV),must get close enough(within a prescribed zero or positive...During the use of robotics in applications such as antiterrorism or combat,a motion-constrained pursuer vehicle,such as a Dubins unmanned surface vehicle(USV),must get close enough(within a prescribed zero or positive distance)to a moving target as quickly as possible,resulting in the extended minimum-time intercept problem(EMTIP).Existing research has primarily focused on the zero-distance intercept problem,MTIP,establishing the necessary or sufficient conditions for MTIP optimality,and utilizing analytic algorithms,such as root-finding algorithms,to calculate the optimal solutions.However,these approaches depend heavily on the properties of the analytic algorithm,making them inapplicable when problem settings change,such as in the case of a positive effective range or complicated target motions outside uniform rectilinear motion.In this study,an approach employing a high-accuracy and quality-guaranteed mixed-integer piecewise-linear program(QG-PWL)is proposed for the EMTIP.This program can accommodate different effective interception ranges and complicated target motions(variable velocity or complicated trajectories).The high accuracy and quality guarantees of QG-PWL originate from elegant strategies such as piecewise linearization and other developed operation strategies.The approximate error in the intercept path length is proved to be bounded to h^(2)/(4√2),where h is the piecewise length.展开更多
面对多障碍、大尺寸障碍、狭窄通道等特殊环境下的USV路径规划问题,快速扩展随机树算法(rapidly-exploring random trees,RRT)存在采样基数大、规划成功率低、规划路径曲折等缺点。基于双延迟深度确定性策略梯度(twin delayed deep dete...面对多障碍、大尺寸障碍、狭窄通道等特殊环境下的USV路径规划问题,快速扩展随机树算法(rapidly-exploring random trees,RRT)存在采样基数大、规划成功率低、规划路径曲折等缺点。基于双延迟深度确定性策略梯度(twin delayed deep deterministic policy gradient,TD3)提出一种全局路径规划算法(TD3-RRT)。结合RRT算法与深度强化学习建立USV路径搜索模型,利用前视探测感知环境以自适应调整扩展步长,通过策略网络输出路径搜索方向,解决RRT算法扩展盲目的问题;改进后见经验回放策略,通过重选虚拟目标、双经验回放池采样等策略以增强复杂环境下路径搜索能力;通过奖励函数提高规划路径质量,加快路径搜索速度。实验结果表明:不同环境下TD3-RRT相比当前主流算法能够有效提高规划成功率,优化转向角度、路径长度和规划时间,证明了改进算法能有效加快路径搜索速度并提高路径质量,且对不同环境具有良好适应性。展开更多
Maritime target recognition and image perception enhancement are gradually being promoted and applied in ocean engineering. This paper proposes the attentional multi-pixel fusion(AMF) algorithm for the intelligent nav...Maritime target recognition and image perception enhancement are gradually being promoted and applied in ocean engineering. This paper proposes the attentional multi-pixel fusion(AMF) algorithm for the intelligent navigation of unmanned surface vessels(USVs). The algorithm preprocesses the image pixel matrix in blocks, computes the mapping between regional and full-pixel matrices, and adaptively equalizes the mapping weights via a Gaussian-fuzzy matrix.This approach guarantees the preservation of the target contour and texture information. Compared with five classic enhancement algorithms, the AMF algorithm improves the peak signal-to-noise ratio(PSNR) and structural similarity index(SSIM). Experimental validation via YOLOv8 for maritime target detection demonstrates 2.1% and 2.4%improvements in the evaluation indices over training on 4000 original images, with shorter training times and lower confusion rates. In maritime target ranging, the AMF algorithm, coupled with the ISR method, exhibits the lowest improved stereo ranging mean absolute error and standard deviation values and higher similarity between the regional and full-pixel matrices. In summary, the AMF algorithm excels in target detection and ranging, offering promising applications in ocean engineering, such as marine resource exploitation, path planning, and intelligent collaboration among unmanned vessels.展开更多
基金supported in part by the National Natural Science Foundation of China under Grants 62071189,62201220 and 62171189by the Key Research and Development Program of Hubei Province under Grant 2021BAA026 and 2020BAB120。
文摘As the problem of surface garbage pollution becomes more serious,it is necessary to improve the efficiency of garbage inspection and picking rather than traditional manual methods.Due to lightness,Unmanned Aerial Vehicles(UAVs)can traverse the entire water surface in a short time through their flight field of view.In addition,Unmanned Surface Vessels(USVs)can provide battery replacement and pick up garbage.In this paper,we innovatively establish a system framework for the collaboration between UAV and USVs,and develop an automatic water cleaning strategy.First,on the basis of the partition principle,we propose a collaborative coverage path algorithm based on UAV off-site takeoff and landing to achieve global inspection.Second,we design a task scheduling and assignment algorithm for USVs to balance the garbage loads based on the particle swarm optimization algorithm.Finally,based on the swarm intelligence algorithm,we also design an autonomous obstacle avoidance path planning algorithm for USVs to realize autonomous navigation and collaborative cleaning.The system can simultaneously perform inspection and clearance tasks under certain constraints.The simulation results show that the proposed algorithms have higher generality and flexibility while effectively improving computational efficiency and reducing actual cleaning costs compared with other schemes.
基金the National Natural Science Foundation of China(No.61625304)。
文摘Modern defense systems are developing towards systematization.intellectualization and automation,which include the collaborative defense system on the sea between multiple unmanned surface vehicles(USVs)and unmanned aerial vehicles(UAVs).UAVs can fly in high altitude and collect marine environment information on patrolling.Furthermore,UAVs can plan defense paths for USVs to intercept intruders with full-assignment or reassignment strategies aiming at maximum overall benefits.Thus,we propose dynamic overlay reconnaissance algor计hm based on genetic idea(GI-DORA)to solve the problem of multi-UAV multi-station reconnaissance.Moreover,we develop continuous particle swarm optimization based on obstaele dimension(OD-CPSO)to optimize defense path of USVs to intercept intruders.In addition,under the designed defense constraints,we propose dispersed particle swarm optimization based on mutation and crossover(MC-DPSO)and real-time batch assignment algorithm(RTBA)in emergency for formulating combat defense mission assignment strategy in different scenarios.Finally,we illus trate the feasibility and effectiveness of the proposed met hods.
文摘In recent years, because of the development of marine military science technology, there is a growing interest in the unmanned systems throughout the world. Also, the demand of Unmanned Surface Vehicles (USVs) which can be autonomously operated without the operator intervention is increasing dramatically. The growing interests lie in the facts that those USVs can be manufactured at much lower costs, and can be operated without the human fatigue, while can be sent to the hostile or quite dangerous areas that are inherently unhealthy for human operators. The utilization and the deployment of such vessels will continue to grow in the future. In this paper, along with the technological development of unmanned surface vehicles, we investigate and analyze the cases of already developed platforms and identify the trends of the technological advances. Additionally, we suggest the future directions of development.
基金partially supported by the National Natural Science Foundation of China under Grant Nos.62033003,62003098,61973091the Local Innovative and Research Teams Project of Guangdong Special Support Program under Grant No.2019BT02X353the China Postdoctoral Science Foundation under Grant Nos.2019M662813 and 2020T130124。
文摘In this paper,the formation control problem is investigated for a team of uncertain underactuated surface vessels(USVs)based on a directed graph.Considering the risk of collision and the limited communication range of USVs,the prescribed performance control(PPC)methodology is employed to ensure collision avoidance and connectivity maintenance.An event-triggered mechanism is designed to reasonably use the limited communication resources.Moreover,neural networks(NNs)and an auxiliary variable are constructed to deal with the problems of uncertain nonlinearities and underactuation,respectively.Then,an event-triggered formation control scheme is proposed to ensure that all signals of the closed-loop system are uniformly ultimately bounded(UUB).Finally,simulation results are presented to demonstrate the effectiveness of the proposed control scheme.
基金supported by the National Natural Sci‐ence Foundation of China(Grant No.62306325)。
文摘During the use of robotics in applications such as antiterrorism or combat,a motion-constrained pursuer vehicle,such as a Dubins unmanned surface vehicle(USV),must get close enough(within a prescribed zero or positive distance)to a moving target as quickly as possible,resulting in the extended minimum-time intercept problem(EMTIP).Existing research has primarily focused on the zero-distance intercept problem,MTIP,establishing the necessary or sufficient conditions for MTIP optimality,and utilizing analytic algorithms,such as root-finding algorithms,to calculate the optimal solutions.However,these approaches depend heavily on the properties of the analytic algorithm,making them inapplicable when problem settings change,such as in the case of a positive effective range or complicated target motions outside uniform rectilinear motion.In this study,an approach employing a high-accuracy and quality-guaranteed mixed-integer piecewise-linear program(QG-PWL)is proposed for the EMTIP.This program can accommodate different effective interception ranges and complicated target motions(variable velocity or complicated trajectories).The high accuracy and quality guarantees of QG-PWL originate from elegant strategies such as piecewise linearization and other developed operation strategies.The approximate error in the intercept path length is proved to be bounded to h^(2)/(4√2),where h is the piecewise length.
文摘面对多障碍、大尺寸障碍、狭窄通道等特殊环境下的USV路径规划问题,快速扩展随机树算法(rapidly-exploring random trees,RRT)存在采样基数大、规划成功率低、规划路径曲折等缺点。基于双延迟深度确定性策略梯度(twin delayed deep deterministic policy gradient,TD3)提出一种全局路径规划算法(TD3-RRT)。结合RRT算法与深度强化学习建立USV路径搜索模型,利用前视探测感知环境以自适应调整扩展步长,通过策略网络输出路径搜索方向,解决RRT算法扩展盲目的问题;改进后见经验回放策略,通过重选虚拟目标、双经验回放池采样等策略以增强复杂环境下路径搜索能力;通过奖励函数提高规划路径质量,加快路径搜索速度。实验结果表明:不同环境下TD3-RRT相比当前主流算法能够有效提高规划成功率,优化转向角度、路径长度和规划时间,证明了改进算法能有效加快路径搜索速度并提高路径质量,且对不同环境具有良好适应性。
文摘由于海洋环境复杂多变,为了保障海员安全,全面提高海洋水域治理能力,近年来水面无人艇(unmanned surface vehicle,USV)的话题热度逐渐升高。USV路径规划能力是其关键技术之一,是其智能化的重要体现。随着船用雷达的逐步发展,现已成为保障船舶安全航行必不可少的一环。本文针对船用雷达图中USV的路径规划问题,将快速扩展随机树(Rapidly-exploring Random Trees,RRT)算法,对其进行改进并应用于USV路径规划问题,再与经典RRT算法进行比较。实验结果表明,改进后的RRT算法比经典RRT算法的路径长度更短,更平滑,证明改进后的RRT算法可以更有效的完成USV的路径规划。
基金financially supported by the Foundation of Shanxi Key Laboratory of Machine Vision and Virtual Reality (Grant No.447-110103)the Science and Technology Innovation Plan of Shanghai Science and Technology Commission (Grant No. 22dz1204000)。
文摘Maritime target recognition and image perception enhancement are gradually being promoted and applied in ocean engineering. This paper proposes the attentional multi-pixel fusion(AMF) algorithm for the intelligent navigation of unmanned surface vessels(USVs). The algorithm preprocesses the image pixel matrix in blocks, computes the mapping between regional and full-pixel matrices, and adaptively equalizes the mapping weights via a Gaussian-fuzzy matrix.This approach guarantees the preservation of the target contour and texture information. Compared with five classic enhancement algorithms, the AMF algorithm improves the peak signal-to-noise ratio(PSNR) and structural similarity index(SSIM). Experimental validation via YOLOv8 for maritime target detection demonstrates 2.1% and 2.4%improvements in the evaluation indices over training on 4000 original images, with shorter training times and lower confusion rates. In maritime target ranging, the AMF algorithm, coupled with the ISR method, exhibits the lowest improved stereo ranging mean absolute error and standard deviation values and higher similarity between the regional and full-pixel matrices. In summary, the AMF algorithm excels in target detection and ranging, offering promising applications in ocean engineering, such as marine resource exploitation, path planning, and intelligent collaboration among unmanned vessels.
文摘为研究避碰规则、无人水面艇(unmanned surface vessel,USV)运动学特点和海上交通复杂度等因素约束下的USV自主避碰技术,在分析初始动态窗口法的基础上,考虑《国际海上避碰规则》(International Regulations for Preventing Collisions at Sea,COLREGs)关于避碰行动时机、避让幅度、复航时机等方面的要求,建立融合避碰规则的动态窗口模型,设计融合避碰规则的动态窗口法。通过对比仿真实验验证该方法的可行性和有效性,具有一定的现实意义。