期刊文献+
共找到556篇文章
< 1 2 28 >
每页显示 20 50 100
Split nitrogen application increases maize root growth,yield,and nitrogen use efficiency under soil warming conditions 被引量:2
1
作者 Zhenqing Xia Yuxiang Gong +3 位作者 Xiangyue Lyu Junchen Lin Yi Yang Haidong Lu 《The Crop Journal》 2025年第2期565-575,共11页
The increase in soil temperature associated with climate change has introduced considerable challenges to crop production.Split nitrogen application(SN)represents a potential strategy for improving crop nitrogen use e... The increase in soil temperature associated with climate change has introduced considerable challenges to crop production.Split nitrogen application(SN)represents a potential strategy for improving crop nitrogen use efficiency and enhancing crop stress resistance.Nevertheless,the precise interaction between soil warming(SW)and SN remains unclear.In order to ascertain the impact of SW on maize growth and whether SN can improve the tolerance of maize to SW,a two-year field experiment was conducted(2022-2023).The aim was to examine the influence of two SW ranges(MT,warming 1.40℃;HT,warming 2.75℃)and two nitrogen application methods(N1,one-time basal application of nitrogen fertilizer;N2,one third of base nitrogen fertilizer+two thirds of jointing stage supplemental nitrogen fertilizer)on maize root growth,photosynthetic characteristics,nitrogen use efficiency,and yield.The results demonstrated that SW impeded root growth and precipitated the premature aging of maize leaves following anthesis,particularly in the HT,which led to a notable reduction in maize yield.In comparison to N1,SN has been shown to increase root length density by 8.54%,root bleeding rate by 8.57%,and enhance root distribution ratio in the middle soil layers(20-60 cm).The interaction between SW and SN had a notable impact on maize growth and yield.The SN improved the absorption and utilization efficiency of nitrogen by promoting root development and downward canopy growth,thus improving the tolerance of maize to SW at the later stage of growth.In particular,the N2HT resulted in a 14.51%increase in the photosynthetic rate,a 18.58%increase in nitrogen absorption efficiency,and a 18.32%increase in maize yield compared with N1HT.It can be posited that the SN represents a viable nitrogen management measure with the potential to enhance maize tolerance to soil high-temperature stress. 展开更多
关键词 Maize(Zea mays L.) Soil warming Split nitrogen application Root growth Nitrogen use efficiency Grain yield
在线阅读 下载PDF
Spatiotemporal characteristics and influencing factors of vegetation water use efficiency on the Tibetan Plateau in 2001-2020 被引量:2
2
作者 HE Chenyang WANG Yanjiao +1 位作者 YAN Feng LU Qi 《Journal of Geographical Sciences》 2025年第1期39-64,共26页
Water use efficiency(WUE),as a pivotal indicator of the coupling degree within the carbon–water cycle of ecosystems,holds considerable importance in assessment of the carbon–water balance within terrestrial ecosyste... Water use efficiency(WUE),as a pivotal indicator of the coupling degree within the carbon–water cycle of ecosystems,holds considerable importance in assessment of the carbon–water balance within terrestrial ecosystems.However,in the context of global warming,WUE evolution and its primary drivers on the Tibetan Plateau remain unclear.This study employed the ensemble empirical mode decomposition method and the random forest algorithm to decipher the nonlinear trends and drivers of WUE on the Tibetan Plateau in 2001–2020.Results indicated an annual mean WUE of 0.8088 gC/mm·m^(2)across the plateau,with a spatial gradient reflecting decrease from the southeast toward the northwest.Areas manifesting monotonous trends of increase or decrease in WUE accounted for 23.64%and 9.69%of the total,respectively.Remarkably,66.67%of the region exhibited trend reversals,i.e.,39.94%of the area of the Tibetan Plateau showed transition from a trend of increase to a trend of decrease,and 26.73%of the area demonstrated a shift from a trend of decrease to a trend of increase.Environmental factors accounted for 70.79%of the variability in WUE.The leaf area index and temperature served as the major driving forces of WUE variation. 展开更多
关键词 water use efficiency spatiotemporal characteristic influencing factor Tibetan Plateau
原文传递
Well-facilitated farmland improves nitrogen use efficiency and reduces environmental impacts in the Huang-Huai-Hai Region,China
3
作者 Xiaoqing Wang Wenjiao Shi +5 位作者 Qiangyi Yu Xiangzheng Deng Lijun Zuo Xiaoli Shi Minglei Wang Jun Li 《Journal of Integrative Agriculture》 2025年第8期3264-3281,共18页
The well-facilitated farmland projects(WFFPs)involve the typical sustainable intensification of farmland use and play a key role in raising food production in China.However,whether such WFFPs can enhance the nitrogen(... The well-facilitated farmland projects(WFFPs)involve the typical sustainable intensification of farmland use and play a key role in raising food production in China.However,whether such WFFPs can enhance the nitrogen(N)use efficiency and reduce environmental impacts is still unclear.Here,we examined the data from 502 valid questionnaires collected from WFFPs in the major grain-producing area,the Huang-Huai-Hai Region(HHHR)in China,with 429 samples for wheat,328 for maize,and 122 for rice.We identified gaps in N use efficiency(NUE)and N losses from the production of the three crops between the sampled WFFPs and counties based on the statistical data.The results showed that compared to the county-level(wheat,39.1%;maize,33.8%;rice,35.1%),the NUEs for wheat(55.2%),maize(52.1%),and rice(50.2%)in the WFFPs were significantly improved(P<0.05).In addition,the intensities of ammonia(NH3)volatilization(9.9-12.2 kg N ha–1),N leaching(6.5-16.9 kg N ha–1),and nitrous oxide(N2O)emissions(1.2-1.6 kg N ha–1)from crop production in the sampled WFFPs were significantly lower than the county averages(P<0.05).Simulations showed that if the N rates are reduced by 10.0,15.0,and 20.0%for the counties,the NUEs of wheat,maize,and rice in the HHHR will increase by 2.9-6.3,2.4-5.2,and 2.6-5.7%,respectively.If the N rate is reduced to the WFFP level in each county,the NUEs of the three crops will increase by 12.9-19.5%,and the N leaching,NH3,and N2O emissions will be reduced by 48.9-56.2,37.4-42.9,and 46.0-66.5%,respectively.Our findings highlight that efficient N management practices in sustainable intensive farmland have considerable potential for reducing environmental impacts. 展开更多
关键词 raising food production environmental impacts sustainable intensification nitrogen use efficiency well facilitated farmland Huang Huai Hai region China sustainable intensification farmland use
在线阅读 下载PDF
Enhancing the yield and water use efficiency of processing tomatoes (Lycopersicon esculentum Miller) through optimal irrigation and salinity management under mulched drip irrigation
4
作者 Jiaying Ma Jian Liu +6 位作者 Yue Wen Zhanli Ma Jinzhu Zhang Feihu Yin Tehseen Javed Jihong Zhang Zhenhua Wang 《Journal of Integrative Agriculture》 2025年第6期2410-2424,共15页
In recent years, the rational utilization of saline water resources for agricultural irrigation has emerged as an effective strategy to alleviate water scarcity. To safely and efficiently exploit saline water resource... In recent years, the rational utilization of saline water resources for agricultural irrigation has emerged as an effective strategy to alleviate water scarcity. To safely and efficiently exploit saline water resources over the long term, it is crucial to understand the effects of salinity on crops and develop optimal water-salinity irrigation strategies for processing tomatoes. A two-year field experiment was conducted in 2018 and 2019 to explore the impact of water salinity levels(S1: 1 g L^(–1), S2: 3 g L^(–1), and S3: 5 g L^(–1)) and irrigation amounts(W1: 305 mm, W2: 485 mm, and W3: 611 mm) on the soil volumetric water content and soil salinity, as well as processing tomato growth, yield, and water use efficiency. The results showed that irrigation with low to moderately saline water(<3 g L^(–1)) enhanced plant wateruptake and utilization capacity, with the soil water content(SWC) reduced by 6.5–7.62% and 10.52–13.23% for the S1 and S2 levels, respectively, compared to the S3 level in 2018. Under S1 condition, the soil salt content(SSC) accumulation rate gradually declined with an increase in the irrigation amount. For example, W3 decreased by 85.00 and 77.94% compared with W1 and W2 in 2018, and by 82.60 and 73.68% in 2019, respectively. Leaching effects were observed at the W3 level under S1, which gradually diminished with increasing water salinity and duration. In 2019, the salt contents of soil under each of the treatments increased by 10.81–89.72% compared with the contents in 2018. The yield of processing tomatoes increased with an increasing irrigation amount and peaked in the S1W3 treatment for the two years, reaching 125,304.85 kg ha^(–1)in 2018 and 128,329.71 kg ha^(–1)in 2019. Notably, in the first year, the S2W3 treatment achieved relatively high yields, exhibiting only a 2.85% reduction compared to the S1W3 treatment. However, the yield of the S2W3 treatment declined significantly in two years, and it was 15.88% less than that of the S1W3 treatment. Structural equation modeling(SEM) revealed that soil environmental factors(SWC and SSC) directly influence yield while also exerting indirect impacts on the growth indicators of processing tomatoes(plant height, stem diameter, and leaf area index). The TOPSIS method identified S1W3, S1W2, and S2W2 as the top three treatments. The single-factor marginal effect function also revealed that irrigation water salinity contributed to the composite evaluation scores(CES) when it was below 0.96 g L^(–1). Using brackish water with a salinity of 3 g L^(–1)at an irrigation amount of 485 mm over one year ensured that processing tomatoes maintained high yields with a relatively high CES(0.709). However, using brackish water for more than one year proved unfeasible. 展开更多
关键词 processing tomatoes soil water and salt transport YIELD water use efficiency irrigation water salinity mulcheddrip irrigation
在线阅读 下载PDF
Long-term excessive nitrogen application decreases spring maize nitrogen use efficiency via suppressing root physiological characteristics
5
作者 Hong Ren Zheng Liu +4 位作者 Xinbing Wang Wenbin Zhou Baoyuan Zhou Ming Zhao Congfeng Li 《Journal of Integrative Agriculture》 2025年第11期4195-4210,共16页
Long-term excessive nitrogen(N)application neither increases nor enhances grain yield and N use efficiency(NUE)of maize,yet the mechanisms involving root morphological and physiological characteristics remain unclear.... Long-term excessive nitrogen(N)application neither increases nor enhances grain yield and N use efficiency(NUE)of maize,yet the mechanisms involving root morphological and physiological characteristics remain unclear.This study aimed to elucidate the mechanisms underlying stagnant grain yield under excessive N application by examining root morphological and physiological characteristics.A 10-year N fertilizer trial was conducted in Jilin Province,Northeast China,cultivating maize at three N fertilizer levels(zero N,N0;recommended N,N2;and high N level,N4)from 2019 to 2021.Two widely cultivated maize genotypes,‘Xianyu 335’(XY335)and‘Zhengdan 958’(ZD958),were evaluated.Grain yield,N content,root morphology,and physiological characteristics were analyzed to assess the relationships between N uptake,N utilization,plant growth,and root systems under different N treatments.Compared to N0,root biomass,post-silking N uptake,and grain yield improved significantly with increased N input,while no significant differences emerged between recommended N and high N.High N application enhanced root length and root surface area but decreased root activity(measured by TTC(2,3,5-triphenyltetrazolium chloride)method),nitrate reductase activity,and root activity absorbing area across genotypes.Root length and root to shoot ratio negatively affected N uptake(by-1.2 and-24.6%),while root surface area,root activity,nitrate reductase activity,and root activity absorbing area contributed positively.The interaction between cultivar and N application significantly influenced NUE.XY335 achieved the highest NUE(11.6%)and N recovery efficiency(18.4%)through superior root surface area(23.6%),root activity(12.5%),nitrate reductase activity(8.3%),and root activity absorbing area(6.9%)compared to other treatments.Recommended N application enhanced Post N uptake,NUE,and grain yield through improved root characteristics,while high N application failed to increase or decreased NUE by reducing these parameters.This study demonstrates that root surface area,root activity,nitrate reductase activity,and root activity absorbing area limit NUE increase under high N application. 展开更多
关键词 MAIZE nitrogen level root characteristics genotypic difference nitrogen use efficiency
在线阅读 下载PDF
Optimizing tillage and fertilization practices to improve the carbon footprint and energy efficiency of wheat-maize cropping systems
6
作者 Kun Han Xinzhu Li +5 位作者 Liang Jia Dazhao Yu Wenhua Xu Hongkun Chen Tao Song Peng Liu 《Journal of Integrative Agriculture》 2025年第10期3789-3802,共14页
To make agricultural systems sustainable in terms of their greenness and efficiency,optimizing the tillage and fertilization practices is essential.To assess the effects of tilling and fertilization practices in wheat... To make agricultural systems sustainable in terms of their greenness and efficiency,optimizing the tillage and fertilization practices is essential.To assess the effects of tilling and fertilization practices in wheat-maize cropping systems,a three-year field experiment was designed to quantify the carbon footprint(CF)and energy efficiency of the cropping systems in the North China Plain.The study parameters included four tillage practices(no tillage(NT),conventional tillage(CT),rotary tillage(RT),and subsoiling rotary tillage(SRT))and two fertilizer regimes(inorganic fertilizer(IF)and hybrid fertilizer with organic and inorganic components(HF)).The results indicated that the most prominent energy inputs and greenhouse gas(GHG)emissions could be ascribed to the use of fertilizers and fuel consumption.Under the same fertilization regime,ranking the tillage patterns with respect to the value of the crop yield,profit,CF,energy use efficiency(EUE)or energy productivity(EP)for either wheat or maize always gave the same sequence of SRT>RT>CT>NT.For the same tillage,the energy consumption associated with HF was higher than IF,but its GHG emissions and CF were lower while the yield and profit were higher.In terms of overall performance,tilling is more beneficial than NT,and reduced tillage practices(RT and SRT)are more beneficial than CT.The fertilization regime with the best overall performance was HF.Combining SRT with HF has significant potential for reducing CF and increasing EUE,thereby improving sustainability.Adopting measures that promote these optimizations can help to overcome the challenges posed by a lack of food security,energy crises and ecological stress. 展开更多
关键词 reduced tillage organic fertilizer greenhouse gases C footprint energy use efficiency
在线阅读 下载PDF
Nano-sized humic acid improves phosphate fertiliser efficiency in chilli pepper
7
作者 Qizhong XIONG Shaojie WANG +6 位作者 Xuxiang CHEN Jianyuan JING Yonglin JIN Hongying LI Chaochun ZHANG Yuji JIANG Xinxin YE 《Pedosphere》 2025年第6期1065-1077,共13页
Humic acid(HA)prevents phosphorus(P)fixation and promotes P absorption by plants,thereby effectively increasing the efficiency of phosphate fertiliser utilisation.Although nano-sized HA(NHA)might exhibit superior effe... Humic acid(HA)prevents phosphorus(P)fixation and promotes P absorption by plants,thereby effectively increasing the efficiency of phosphate fertiliser utilisation.Although nano-sized HA(NHA)might exhibit superior effects compared to conventional-sized HA(CHA),evidence is limited.Therefore,we investigated the effects of CHA and NHA applied with conventional phosphate fertiliser(CHA+CP and NHA+CP,respectively)on chilli pepper biomass,P uptake,and root morphology,as well as soil available P content,and evaluated CHA,NHA,and their residues in the soil for differences in specific surface area,functional groups,molecular weight distribution,and surface elemental compositions in a 40-d pot cultivation experiment.Results showed that the CHA+CP and NHA+CP treatments significantly increased pepper biomass and P uptake by 15.2%–24.7%and 37.9%–49.0%,respectively,compared to the conventional phosphate fertiliser applied alone(CP)treatment(P<0.05),with NHA exhibiting a greater effect than CHA.This was primarily related to NHA's stronger ability to reduce P fixation than that of CHA.Soil available P content significantly increased by 5.8%and 3.8%in the NHA+CP treatment compared with CHA+CP on days 22 and 40 of cultivation,respectively(P<0.05).Nano-sized HA contained more small-molecule components and carboxyl groups than CHA,which can more stimulate root elongation and thus promote root P uptake.Furthermore,fertiliser-derived P gradually entered the structure of CHA or NHA during cultivation.The presence of more plant-available forms(e.g.,H2PO_(4)^(2-)and HPO_(4)^(2-))in NHA compared to CHA also contributed to better regulation of phosphate fertiliser efficacy.In conclusion,NHA is superior to CHA in improving phosphate fertiliser efficiency,making it a potential alternative material for the development of high-efficiency phosphate fertilisers.This presents an excellent opportunity to minimise P resource waste. 展开更多
关键词 available phosphorus fertiliser performance phosphorus use efficiency phosphorus fixation plant growth
原文传递
Bju B05.GS1.4 promotes nitrogen assimilation and participates in the domestication of shoot nitrogen use efficiency in Brassica juncea
8
作者 Rumeng Wang Jinsong Luo +5 位作者 Jian Zeng Yingying Xiong Tianchu Shu Dawei He Zhongsong Liu Zhenhua Zhang 《Journal of Integrative Agriculture》 2025年第5期1800-1812,共13页
Elucidating crops'physiological and molecular mechanisms to adapt to low nitrogen environment and promoting nitrogen transfer from senescent leaves to new leaves is crucial in improving Brassica's nitrogen use... Elucidating crops'physiological and molecular mechanisms to adapt to low nitrogen environment and promoting nitrogen transfer from senescent leaves to new leaves is crucial in improving Brassica's nitrogen use efficiency(NUE).Glutamine synthetase gene(GS)plays a vital role in helping plants reassimilate ammonium released from protein degradation in leaves,and it was the focus of our research on this topic.In this study,we identified high(H141)and low(L65)NUE genotypes of Brassica juncea with different responses to low-nitrogen stress.We found that H141 has a lower nitrate content but higher ammonium and free amino acid contents as well as higher nitrate reductase and GS activities in the shoots.These physiological indicators are responsible for the high NUE of H141.Wholegenome resequencing data revealed that 5,880 genes associated with NUE are polymorphic between H141 and L65.These genes participate in various amino acid,carbohydrate,and energy metabolic pathways.Haplotype analysis revealed two haplotypes for BjuB05.GS1.4,Hap1 and Hap2,which have multiple single nucleotide polymorphisms or insertions/deletions in the regulatory regions of the 5′and 3′untranslated regions and introns.Furthermore,the shoot NUE of Hap1 is significantly lower than that of Hap2.These two haplotypes of BjuB05.GS1.4 lead to differences in the shoot NUEs of different genetic populations of mustard and are associated with the local soil nitrogen content,suggesting that they might help mustard to adapt to different geographic localities.In conclusion,the results of our study shed light on the physiological and molecular mechanisms underlying different mustard NUE genotypes and demonstrate the enormous potential of NUE breeding in B.juncea. 展开更多
关键词 Brassica juncea nitrogen use efficiency BjuB05.GS1.4 HAPLOTYPE GENOTYPE
在线阅读 下载PDF
Light Use Efficiency Model Based on Chlorophyll Content Better Captures Seasonal Gross Primary Production Dynamics of Deciduous Broadleaf Forests
9
作者 YANG Rongjuan LIU Ronggao +3 位作者 LIU Yang CHEN Jingming XU Mingzhu HE Jiaying 《Chinese Geographical Science》 2025年第1期55-72,共18页
Gross primary production(GPP)is a crucial indicator representing the absorption of atmospheric CO_(2) by vegetation.At present,the estimation of GPP by remote sensing is mainly based on leaf-related vegetation indexes... Gross primary production(GPP)is a crucial indicator representing the absorption of atmospheric CO_(2) by vegetation.At present,the estimation of GPP by remote sensing is mainly based on leaf-related vegetation indexes and leaf-related biophysical para-meter leaf area index(LAI),which are not completely synchronized in seasonality with GPP.In this study,we proposed chlorophyll content-based light use efficiency model(CC-LUE)to improve GPP estimates,as chlorophyll is the direct site of photosynthesis,and only the light absorbed by chlorophyll is used in the photosynthetic process.The CC-LUE model is constructed by establishing a linear correlation between satellite-derived canopy chlorophyll content(Chlcanopy)and FPAR.This method was calibrated and validated utiliz-ing 7-d averaged in-situ GPP data from 14 eddy covariance flux towers covering deciduous broadleaf forest ecosystems across five dif-ferent climate zones.Results showed a relatively robust seasonal consistency between Chlcanopy with GPP in deciduous broadleaf forests under different climatic conditions.The CC-LUE model explained 88% of the in-situ GPP seasonality for all validation site-year and 56.0% of in-situ GPP variations through the growing season,outperforming the three widely used LUE models(MODIS-GPP algorithm,Vegetation Photosynthesis Model(VPM),and the eddy covariance-light use efficiency model(EC-LUE)).Additionally,the CC-LUE model(RMSE=0.50 g C/(m^(2)·d))significantly improved the underestimation of GPP during the growing season in semi-arid region,re-markably decreasing the root mean square error of averaged growing season GPP simulation and in-situ GPP by 75.4%,73.4%,and 37.5%,compared with MOD17(RMSE=2.03 g C/(m^(2)·d)),VPM(RMSE=1.88 g C/(m^(2)·d)),and EC-LUE(RMSE=0.80 g C/(m^(2)·d))model.The chlorophyll-based method proved superior in capturing the seasonal variations of GPP in forest ecosystems,thereby provid-ing the possibility of a more precise depiction of forest seasonal carbon uptake. 展开更多
关键词 canopy chlorophyll content(Chlcanopy) PHOTOSYNTHESIS gross primary production(GPP) light use efficiency(LUE)model seasonal dynamics deciduous broadleaf forest(DBF)
在线阅读 下载PDF
Matching the light and nitrogen distributions in the maize canopy to achieve high yield and high radiation use efficiency
10
作者 Xiaoxia Guo Wanmao Liu +6 位作者 Yunshan Yang Guangzhou Liu Bo Ming Ruizhi Xie Keru Wang Shaokun Li Peng Hou 《Journal of Integrative Agriculture》 2025年第4期1424-1435,共12页
The distributions of light and nitrogen within a plant's canopy reflect the growth adaptation of crops to the environment and are conducive to improving the carbon assimilation ability.So can the yield in crop pro... The distributions of light and nitrogen within a plant's canopy reflect the growth adaptation of crops to the environment and are conducive to improving the carbon assimilation ability.So can the yield in crop production be maximized by improving the light and nitrogen distributions without adding any additional inputs?In this study,the effects of different nitrogen application rates and planting densities on the canopy light and nitrogen distributions of two highyielding maize cultivars(XY335 and DH618)and the regulatory effects of canopy physiological characteristics on radiation use efficiency(RUE)and yield were studied based on high-yield field experiments in Qitai,Xinjiang Uygur Autonomous Region,China,during 2019 and 2020.The results showed that the distribution of photosynthetically active photon flux density(PPFD)in the maize canopy decreased from top to bottom,while the vertical distribution of specific leaf nitrogen(SLN)initially increased and then decreased from top to bottom in the canopy.When SLN began to decrease,the PPDF values of XY335 and DH618 were 0.5 and 0.3,respectively,corresponding to 40.6 and49.3%of the total leaf area index(LAI).Nitrogen extinction coefficient(K_(N))/light extinction coefficient(K_(L))ratio in the middle and lower canopy of XY335(0.32)was 0.08 higher than that of DH618(0.24).The yield and RUE of XY335(17.2 t ha^(-1)and 1.8g MJ^(-1))were 7.0%(1.1 t ha^(-1))and 13.7%(0.2 g MJ^(-1))higher than those of DH618(16.1 t ha^(-1)and 1.6 g MJ^(-1)).Therefore,better light conditions(where the proportion of LAI in the upper and middle canopy was small)improved the light distribution when SLN started to decline,thus helping to mobilize the nitrogen distribution and maintain a high K_(N)and K_(N)/K_(L)ratio.In addition,K_(N)/K_(L)was a key parameter for yield improvement when the maize nutrient requirements were met at 360 kg N ha^(-1).At this level,an appropriately optimized high planting density could promote nitrogen utilization and produce higher yields and greater efficiency.The results of this study will be important for achieving high maize yields and the high efficiency cultivation and breeding of maize in the future. 展开更多
关键词 MAIZE canopy N distribution canopy light distribution radiation use efficiency
在线阅读 下载PDF
Stable carbon isotope composition and intrinsic water use efficiency of different functional plants on the western slope of Wuyi Mountains,China
11
作者 HUANG Kangxiang CHEN Huimin +7 位作者 REN Jiusheng XU Fangfang ZHOU Wei YUAN Bosen ZHANG Yuan WU Ting XIAO Shengsheng SHI Fuxi 《Journal of Mountain Science》 2025年第7期2512-2526,共15页
Stable carbon isotopes(δ^(13)C)are extensively utilized to study intrinsic water use efficiency(iWUE)at the leaf-scale in terrestrial ecosystems,serving as a crucial metric for assessing plant adaptation to climate c... Stable carbon isotopes(δ^(13)C)are extensively utilized to study intrinsic water use efficiency(iWUE)at the leaf-scale in terrestrial ecosystems,serving as a crucial metric for assessing plant adaptation to climate change.However,there is currently a lack of consensus regarding the leaf-scale iWUE variation characteristics among different functional types.In this study,we measured theδ^(13)Cleaf and iWUE values of different functional plants(i.e.,life forms,leaf types,and mycorrhizal types)from 120 species across distinct habitat types(i.e.,hillside,nearpeak,and peak)in a subtropical forest on the western slope of Wuyi Mountains,southern China.The results showed that theδ^(13)Cleaf values of plants on the western slope of Wuyi Mountains ranged from-34.63‰to-30.04‰,and iWUE ranged from 5.93μmol mol^(-1)to 57.34μmol mol^(-1).Theδ^(13)Cleaf and iWUE values differed significantly among plant life forms,following the order of herbs>vine plants>shrubs>trees.Theδ^(13)Cleaf and iWUE values of ectomycorrhizal(ECM)species were greater than those of arbuscular mycorrhizal(AM)species despite there being no significant difference between plants with different leaf types(Simple leaves(SL)vs.Compound leaves(CL)).From the hillside to the peak,both at the community level and at the species level,theδ^(13)C values of leaves and iWUE values of plants exhibited an upward trend.The regression analysis revealed that leaf-scale iWUE was significantly negatively correlated with soil water content and significantly positively correlated with leaf phosphorus content.The findings indicated that leaf carbon isotope fractionation and corresponding iWUE can be influenced by life form,mycorrhizal type,and soil water availability.These insights provide a deeper understanding of the coupling mechanisms of carbon,water,and nutrients among different functional plant types in subtropical forests,and offer insights into predicting plant adaptability under climate change. 展开更多
关键词 Stable carbon isotope Water use efficiency Plant functional groups Subtropical forest
原文传递
Using irrigation intervals to optimize water-use efficiency and maize yield in Xinjiang,northwest China 被引量:8
12
作者 Guoqiang Zhang Dongping Shen +10 位作者 Bo Ming Ruizhi Xie Xiuliang Jin Chaowei Liu Peng Hou Jun Xue Jianglu Chen Wanxu Zhang Wanmao Liu Keru Wang Shaokun Li 《The Crop Journal》 SCIE CAS CSCD 2019年第3期322-334,共13页
Worldwide, scarce water resources and substantial food demands require efficient water use and high yield.This study investigated whether irrigation frequency can be used to adjust soil moisture to increase grain yiel... Worldwide, scarce water resources and substantial food demands require efficient water use and high yield.This study investigated whether irrigation frequency can be used to adjust soil moisture to increase grain yield and water use efficiency(WUE) of high-yield maize under conditions of mulching and drip irrigation.A field experiment was conducted using three irrigation intervals in 2016: 6, 9, and 12 days(labeled D6, D9, and D12) and five irrigation intervals in 2017: 3, 6, 9, 12, and 15 days(D3, D6, D9, D12, and D15).In Xinjiang, an optimal irrigation quota is 540 mm for high-yield maize.The D3, D6, D9, D12, and D15 irrigation intervals gave grain yields of 19.7, 19.1–21.0, 18.8–20.0, 18.2–19.2, and 17.2 Mg ha^-1 and a WUE of 2.48, 2.53–2.80, 2.47–2.63, 2.34–2.45, and 2.08 kg m-3, respectively.Treatment D6 led to the highest soil water storage, but evapotranspiration and soil-water evaporation were lower than other treatments.These results show that irrigation interval D6 can help maintain a favorable soil-moisture environment in the upper-60-cm soil layer, reduce soilwater evaporation and evapotranspiration, and produce the highest yield and WUE.In this arid region and in other regions with similar soil and climate conditions, a similar irrigation interval would thus be beneficial for adjusting soil moisture to increase maize yield and WUE under conditions of mulching and drip irrigation. 展开更多
关键词 Irrigation frequency Soil moisture MAIZE High yield(>15 Mg ha^(-1)) Water use efficiency
在线阅读 下载PDF
Effects of water application uniformity using a center pivot on winter wheat yield, water and nitrogen use efficiency in the North China Plain 被引量:7
13
作者 CAI Dong-yu YAN Hai-jun LI Lian-hao 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2020年第9期2326-2339,共14页
In recent years, the use of fertigation technology with center pivot irrigation systems has increased rapidly in the North China Plain (NCP). The combined effects of water and nitrogen application uniformity on the gr... In recent years, the use of fertigation technology with center pivot irrigation systems has increased rapidly in the North China Plain (NCP). The combined effects of water and nitrogen application uniformity on the grain yield, water use efficiency (WUE) and nitrogen use efficiency (NUE) have become a research hotspot. In this study, a two-year field experiment was conducted during the winter wheat growing season in 2016–2018 to evaluate the water application uniformity of a center pivot with two low pressure sprinklers (the R3000 sprinklers were installed in the first span, the corresponding treatment was RS;the D3000 sprinklers were installed in the second span, the corresponding treatment was DS) and a P85A impact sprinkler as the end gun (the corresponding treatment was EG), and to analyze its effects on grain yield, WUE and NUE. The results showed that the water application uniformity coefficients of R3000, D3000 and P85A along the radial direction of the pivot (CUH) were 87.5, 79.5 and 65%, respectively. While the uniformity coefficients along the traveling direction of the pivot (CUC) were all higher than 85%. The effects of water application uniformity of the R3000 and D3000 sprinklers on grain yield were not significant (P>0.05);however, the average grain yield of EG was significantly lower (P<0.05) than those of RS and DS, by 9.4 and 11.1% during two growing seasons, respectively. The coefficients of variation (CV) of the grain yield had a negative correlation with the uniformity coefficient. The CV of WUE was more strongly affected by the water application uniformity, compared with the WUE value, among the three treatments. The NUE of RS was higher than those of DS and EG by about 6.1 and 4.8%, respectively, but there were no significant differences in NUE among the three treatments during the two growing seasons. Although the CUH of the D3000 sprinklers was lower than that of the R3000, it had only limited effects on the grain yield, WUE and NUE. However, the cost of D3000 sprinklers is lower than that of R3000 sprinklers. Therefore, the D3000 sprinklers are recommended for winter wheat irrigation and fertigation in the NCP. 展开更多
关键词 center pivot low pressure sprinkler water application uniformity winter wheat water and nitrogen use efficiency
在线阅读 下载PDF
Genetic dissection of N use efficiency using maize inbred lines and testcrosses 被引量:1
14
作者 Xiaoyang Liu Kunhui He +8 位作者 Farhan Ali Dongdong Li Hongguang Cai Hongwei Zhang Lixing Yuan Wenxin Liu Guohua Mi Fanjun Chen Qingchun Pan 《The Crop Journal》 SCIE CSCD 2023年第4期1242-1250,共9页
Although the use of heterosis in maize breeding has increased crop productivity,the genetic causes underlying heterosis for nitrogen(N) use efficiency(NUE) have been insufficiently investigated.In this study,five N-re... Although the use of heterosis in maize breeding has increased crop productivity,the genetic causes underlying heterosis for nitrogen(N) use efficiency(NUE) have been insufficiently investigated.In this study,five N-response traits and five low-N-tolerance traits were investigated using two inbred line populations(ILs) consisting of recombinant inbred lines(RIL) and advanced backcross(ABL) populations,derived from crossing Ye478 with Wu312.Both populations were crossed with P178 to construct two testcross populations.IL populations,their testcross populations,and the midparent heterosis(MPH)for NUE were investigated.Kernel weight,kernel number,and kernel number per row were sensitive to N level and ILs showed higher N response than did the testcross populations.Based on a highdensity linkage map,138 quantitative trait loci(QTL) were mapped,each explaining 5.6%–38.8% of genetic variation.There were 52,34 and 52 QTL for IL populations,MPH,and testcross populations,respectively.The finding that 7.6% of QTL were common to the ILs and their testcross populations and that 11.7% were common to the MPH and testcross population indicated that heterosis for NUE traits was regulated by non-additive and non-dominant loci.A QTL on chromosome 5 explained 27% of genetic variation in all of the traits and Gln1-3 was identified as a candidate gene for this QTL.Genome-wide prediction of NUE traits in the testcross populations showed 14%–51% accuracy.Our results may be useful for clarifying the genetic basis of heterosis for NUE traits and the candidate gene may be used for genetic improvement of maize NUE. 展开更多
关键词 MAIZE Nitrogen use efficiency HETEROSIS Genetic basis
在线阅读 下载PDF
Improving Water Use Efficiency for a Sustainable Productivity of Agricultural Systems Using Subsurface Drip Irrigation 被引量:1
15
作者 B. Douh A. Boujelben 《Journal of Agricultural Science and Technology(B)》 2011年第6期881-888,共8页
The sustainability of agricultural production depends on conservation and appropriate use and management of scarce water resources especially in arid and semi-arid areas where irrigation is required for the production... The sustainability of agricultural production depends on conservation and appropriate use and management of scarce water resources especially in arid and semi-arid areas where irrigation is required for the production of food and cash crops. The objective of this paper was to evaluate the effects of surface and subsurface drip irrigation (SDI) at 5, 20 and 35 cm depths on water's dynamic in soil (Soil moisture distribution, water's stock in soil and irrigation water use efficiency) to produce maize in semiarid climates. Field study was conducted at the Higher Institute of Agronomy of Chott Meriem, Tunisia. The results indicated that soil moisture content under subsurface drip irrigation at 35 cm (T3) depth was more uniform compared to 5 cm (T1) and 20 cm (T2). Moreover, irrigation water use efficiency was higher in this treatment. Indeed, it increased about 18%, 14% and 7% for T3, T2 and T1, respectively when compared with surface drip irrigation. The results of the present study showed that SDI allows uniform soil moisture, minimize the evaporative loss and delivery water directly to the plant root zone and consequently increases use efficiency. Further research is needed in order to determine whether corn production with SDI is feasible in the arid region. 展开更多
关键词 SUSTAINABILITY arid region soil moisture irrigation water use efficiency maize.
在线阅读 下载PDF
Effects of organic fertilizers produced using different techniques on rice grain yield and ammonia volatilization in double-cropping rice fields 被引量:1
16
作者 Mingcheng HU Andrew JWADE +3 位作者 Weishou SHEN Zhenfang ZHONG Chongwen QIU Xiangui LIN 《Pedosphere》 SCIE CAS CSCD 2024年第1期110-120,共11页
Ammonia(NH_(3)) volatilization from rice fields contributes to poor air quality and indicates low nitrogen use efficiency. Although organic fertilizers can meet the nitrogen requirement for rice growth, the simultaneo... Ammonia(NH_(3)) volatilization from rice fields contributes to poor air quality and indicates low nitrogen use efficiency. Although organic fertilizers can meet the nitrogen requirement for rice growth, the simultaneous effects of organic fertilizers on NH_(3) volatilization and rice yield in paddy fields are poorly understood and quantified. To address this gap in our knowledge, experimental field plots were established in a conventional double-cropping paddy field in the Pearl River Delta region, southern China. Five fertilizer treatments were used besides the control with no fertilizer: fresh organic fertilizer, successively composted organic fertilizer, chemically composted organic fertilizer, mixture of chemically composted organic fertilizer with inorganic fertilizer, and chemical fertilizer. Ammonia volatilization was measured using a batch-type airflow enclosure method. No significant differences in grain yield were observed among organic and chemical fertilizer treatments. However, compared with chemical fertilizer, chemically composted organic fertilizer and successively composted organic fertilizer significantly decreased total NH_(3) volatilization by 70% and 68%, respectively. The ammonium-nitrogen concentration in field surface water correlated strongly(P < 0.01) and positively with NH_(3) volatilization across fertilization treatments. Our findings demonstrate that chemically composted organic fertilizer can sustain rice yield while reducing NH_(3) volatilization. An important future step is to promote these field measurements to similar rice cultivation areas to quantify the regional-and national-scale impact on air quality and nitrogen deposition in sensitive areas, and to design and implement better fertilizer management practices. 展开更多
关键词 air quality crop production MANURE NH_(3)emission nitrogen use efficiency
原文传递
Determination of Leafy Vegetables Need in Water andNitrogen Use Efficiency by Using the Diviner 2000 andthe Isotopes Techniques: Case of Amaranth(Amaranthus cruentus)
17
作者 NoupéDiakaria Coulibaly Lassina Fondio +3 位作者 Thierry Lekadou Isaya Sijali Mako François De Paul N’Gbesso Catherine Kibunja 《Journal of Agricultural Science and Technology(B)》 2020年第3期134-143,共10页
A study was conducted to determine how the nitrogen(N)in the fertilisers can be quantified and what amounts of fertilizers should be given to leafy vegetables to achieve their requirements.This study also aimed to det... A study was conducted to determine how the nitrogen(N)in the fertilisers can be quantified and what amounts of fertilizers should be given to leafy vegetables to achieve their requirements.This study also aimed to determine the efficient use of water by the plant.The experiment was laid out in a randomized complete block with three replicates and three levels of urea(T0=0 kg/ha,T1=43.5 kg/ha,T2=65 kg/ha).Estimation of growth parameters and biomass yield revealed that the treatments produced statistically identical values.But numerically,T1(43.5 kg of urea/ha)gave the highest yields and T2(65 kg of urea/ha)produced the lowest.It was the same for the determination of the water use efficiency(WUE)by the plant where T1 produced the highest values compared to T2.The yield curve as a function of the applied urea dose allowed the identification of the urea dose that corresponds to optimal yield in amaranth.From the dose of 65 kg of urea/ha,any increase becomes harmful to the plant.This results in a decrease in yield in the amaranth plant. 展开更多
关键词 AMARANTH leafy vegetable nitrogen biomass yield efficient use of water.
在线阅读 下载PDF
Efficiency of Model Induction Motor Using Various Non-Oriented Electrical Steels
18
作者 Atsuhito Honda, Masaki Kawano, Masyoshi Ishida, Kejji Sato and Michiro Komatsubara (Kawasaki Steel Corporation, Kurashiki 712-8511, Japan) Isamu Ohyama (Kawasaki Steel Techno-Research Corporation, Chiba 260-0835, Japan) 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2000年第2期238-243,共6页
The performance of a 3-phase 6-pole 400 W inverter-drive induction motor was investigated using a variety of non-oriented electrical steels for stator core at PWM inverter fundamental wave frequencies of 30 to 300 Hz.... The performance of a 3-phase 6-pole 400 W inverter-drive induction motor was investigated using a variety of non-oriented electrical steels for stator core at PWM inverter fundamental wave frequencies of 30 to 300 Hz. There existed an optimum Si content of the material depending on the tooth flux density. Both reduction of material thickness and stress-relief annealing of the stator core improved the motor efficiency. The influence of Si content on the efficiency was small at lower PWM frequencies, while at higher frequencies the motor efficiency increased with increasing Si content. The Cu loss WC increased and the Fe loss Wi counteractiveiy decreasedwith increasing Si content at lower frequencies; while at higher frequencies Wi had dominant effect on the efficiency. Newly developed materials RMA, having lower Fe losses after stress-relief annealing and higher flux densities with lower Si contents, showed motor efficiencies superior to conventional J1S grade materials with comparable Fe losses. 展开更多
关键词 In efficiency of Model Induction Motor using Various Non-Oriented Electrical Steels RMA FIGURE St HIGH
在线阅读 下载PDF
Improving the efficiency of transport systems using simulation
19
作者 Bushuev Sergey Valentinovich Kovalev Igor Alexandrovich +1 位作者 Permikin Vadim Yurievich Anashkina Nataliia Yurievna 《系统仿真学报》 CAS CSCD 北大核心 2020年第2期340-345,共6页
The article describes the possibilities of application of simulation modeling for the analysis of infrastructure and technology of transport services of enterprises. The main technological and possible economic effect... The article describes the possibilities of application of simulation modeling for the analysis of infrastructure and technology of transport services of enterprises. The main technological and possible economic effects for the enterprises arising at performance of modeling of a transport component of their work are resulted. 展开更多
关键词 SERVICE Improving the efficiency of transport systems using simulation
原文传递
Effects of thinning and understory removal on water use efficiency of Pinus massoniana:evidence from photosynthetic capacity and stable carbon isotope analyses
20
作者 Ting Wang Qing Xu +4 位作者 Beibei Zhang Deqiang Gao Ying Zhang Jing Jiang Haijun Zuo 《Journal of Forestry Research》 SCIE EI CAS CSCD 2024年第2期42-53,共12页
Understanding the relationship between forest management and water use efficiency(WUE)is important for evaluating forest adaptability to climate change.However,the effects of thinning and understory removal on WUE and... Understanding the relationship between forest management and water use efficiency(WUE)is important for evaluating forest adaptability to climate change.However,the effects of thinning and understory removal on WUE and its key controlling processes are not well understood,which limits our comprehension of the physiological mechanisms of various management practices.In this study,four forest management measures(no thinning:NT;understory removal:UR;light thinning:LT;and heavy thinning:HT)were carried out in Pinus massoniana plantations in a subtropical region of China.Photosynthetic capacity and needle stable carbon isotope composition(δ^(13)C)were measured to assess instantaneous water use efficiency(WUE_(inst))and long-term water use efficiency(WUE_(i)).Multiple regression models and structural equation modelling(SEM)identified the effects of soil properties and physiological performances on WUE_(inst)and WUE_(i).The results show that WUE_(inst)values among the four treatments were insignificant.However,compared with the NT stand(35.8μmol·mol^(-1)),WUE_(i)values significantly increased to 41.7μmol·mol^(-1)in the UR,50.1μmol·mol^(-1)in the LT and 46.6μmol·mol^(-1)in HT treatments,largely explained by photosynthetic capacity and soil water content.Understory removal did not change physiological performance(needle water potential and photosynthetic capacity).Thinning increased the net photosynthetic rate(A_n)but not stomatal conductance(g_s)or predawn needle water potential(ψ_(pd)),implying that the improvement in water use efficiency for thinned stands was largely driven by radiation interception than by soil water availability.In general,thinning may be an appropriate management measure to promote P.massoniana WUE to cope with seasonal droughts under future extreme climates. 展开更多
关键词 Stable carbon isotope Water use efficiency THINNING Understory removal Photosynthetic capacity Needle water potential
在线阅读 下载PDF
上一页 1 2 28 下一页 到第
使用帮助 返回顶部