期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Mining User Interest in Microblogs with a User-Topic Model 被引量:17
1
作者 HE Li JIA Yan +1 位作者 HAN Weihong DING Zhaoyun 《China Communications》 SCIE CSCD 2014年第8期131-144,共14页
Microblogs have become an important platform for people to publish,transform information and acquire knowledge.This paper focuses on the problem of discovering user interest in microblogs.In this paper,we propose a to... Microblogs have become an important platform for people to publish,transform information and acquire knowledge.This paper focuses on the problem of discovering user interest in microblogs.In this paper,we propose a topic mining model based on Latent Dirichlet Allocation(LDA) named user-topic model.For each user,the interests are divided into two parts by different ways to generate the microblogs:original interest and retweet interest.We represent a Gibbs sampling implementation for inference the parameters of our model,and discover not only user's original interest,but also retweet interest.Then we combine original interest and retweet interest to compute interest words for users.Experiments on a dataset of Sina microblogs demonstrate that our model is able to discover user interest effectively and outperforms existing topic models in this task.And we find that original interest and retweet interest are similar and the topics of interest contain user labels.The interest words discovered by our model reflect user labels,but range is much broader. 展开更多
关键词 MICROBLOGS topic mining userinterest LDA user-topic model
在线阅读 下载PDF
基于大数据网络用户兴趣个性化推荐模型分析 被引量:5
2
作者 王蓉 李小青 +2 位作者 刘军兰 严晓梅 陈瑜 《电子设计工程》 2019年第21期5-8,13,共5页
针对传统分析方法受噪声和人为因素影响而造成分析结果较差的问题,我们提出了一种基于大数据的社交网络用户兴趣个性化推荐模型。在矢量空间模型的基础上,分析了用户兴趣推荐模型结构及其与周围模型的交互关系,划分了服务器网络部署模块... 针对传统分析方法受噪声和人为因素影响而造成分析结果较差的问题,我们提出了一种基于大数据的社交网络用户兴趣个性化推荐模型。在矢量空间模型的基础上,分析了用户兴趣推荐模型结构及其与周围模型的交互关系,划分了服务器网络部署模块,设计了运行模型网络结构。通过MapReduce模型将任务分布到分布式计算机集群中,用以构建用户感兴趣的个性化推荐模型。利用大数据双层关联规则数据挖掘技术获取用户感兴趣的网络数据,利用推荐结果确定用户对推荐内容的兴趣程度。实验对比结果表明,用此分析方法的分析效果可高达98%,对大规模社交网络用户的个性化推荐具有良好的可扩展性。 展开更多
关键词 大数据 社交网络 用户兴趣 个性化 推荐 模型
在线阅读 下载PDF
Combining long-term and short-term user interest for personalized hashtag recommendation 被引量:9
3
作者 Jianjun YU Tongyu ZHU 《Frontiers of Computer Science》 SCIE EI CSCD 2015年第4期608-622,共15页
Hashtags, terms prefixed by a hash-symbol #, are widely used and inserted anywhere within short messages (tweets) on micro-blogging systems as they present rich sen- timent information on topics that people are inte... Hashtags, terms prefixed by a hash-symbol #, are widely used and inserted anywhere within short messages (tweets) on micro-blogging systems as they present rich sen- timent information on topics that people are interested in. In this paper, we focus on the problem of hashtag recommenda- tion considering their personalized and temporal aspects. As far as we know, this is the first work addressing this issue spe- cially to recommend personalized hashtags combining long- term and short-term user interest. We introduce three features to capture personal and temporal user interest: 1) hashtag textual information; 2) user behavior; and 3) time. We of- fer two recommendation models for comparison: a linear- combined model, and an enhanced session-based temporal graph (STG) model, Topic-STG, considering the features to learn user preferences and subsequently recommend person- alized hashtags. Experiments on two real tweet datasets illus- trate the effectiveness of the proposed models and algorithms. 展开更多
关键词 RECOMMENDATION hashtag time-sensitive userinterest
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部