Based on the analysis method for tailings dam in upstream raising method presently used in metallurgy and nonferrous metals tailings depository in the world, an effective stress analysis method of seismic response for...Based on the analysis method for tailings dam in upstream raising method presently used in metallurgy and nonferrous metals tailings depository in the world, an effective stress analysis method of seismic response for high tailings dam was developed according to the results of engineering geological exploration, static and dynamic test and stability analysis on Baizhishan tailing dam 113.5 m high. The law of generation, diffusion and dissipation of seismic pore water pressure during and after earthquake was investigated, and the results of tailings dam’s acceleration, seismic dynamic stress and pore water pressure were obtained. The results show that the seismic stability and liquefaction resistance of high tailings dam are strengthened remarkably, and the scope and depth of liquefaction area at the top of dam are reduced greatly. The interior stress is compressive stress, the stress level of every element is less than 1.0 and the safety coefficient of every element is greater than 1.0. The safety coefficient against liquefaction of every element of tailing dam is greater than 1.5 according to the effective stress analysis of seismic response by finite element method. The calculated results prove that liquefaction is the main reason of seismic failure of high tailing dams, and the effect of seismic inertia forces on high tailing dams’ stability during earthquake is secondary reason.展开更多
在对高压直流(HVDC)输电线路下的电磁环境进行预测时,地面合成场强和离子流密度的计算问题实际上是一个多维非线性问题。在对剖分单元进行处理时,为了解决传统的有限元方法、上流有限元法采取线性假设与线性插值,存在计算量大、精度差...在对高压直流(HVDC)输电线路下的电磁环境进行预测时,地面合成场强和离子流密度的计算问题实际上是一个多维非线性问题。在对剖分单元进行处理时,为了解决传统的有限元方法、上流有限元法采取线性假设与线性插值,存在计算量大、精度差、算法效率低的问题,提出一种新的非线性空间电荷密度插值方法,从理论上推导了算法的实现过程,并基于上流有限元方法对离子电流密度方程进行迭代求解。采用该算法对现场运行的±500 k V和±800 k V输电线路离子流场进行了理论计算与现场实地测量,并将理论计算结果与实际测量结果进行了对比,结果表明:所提出的算法能在减少计算量的同时提高计算的准确度。针对风速对双极离子流场影响的研究较少的情况,研究讨论了不同风速影响下的双极离子流场问题,得到了风速对双极离子流场地面最大合成场强和离子流密度影响的规律,为新的直流输电线路的设计提供了有力的参考。展开更多
An upwind scheme based on the unstructured mesh is developed to solve ideal 2-D magnetohydrodynamics (MHD) equations. The inviscid fluxes are approximated by using the modified advection upstream splitting method (...An upwind scheme based on the unstructured mesh is developed to solve ideal 2-D magnetohydrodynamics (MHD) equations. The inviscid fluxes are approximated by using the modified advection upstream splitting method (AUSM) scheme, and a 5-stage explicit Runge-Kutta scheme is adopted in the time integration. To avoid the influence of the magnetic field divergence created during the simulation, the hyperbolic divergence cleaning method is introduced. The shock-capturing properties of the method are verified by solving the MHD shock-tube problem. Then the 2-D nozzle flow with the magnetic field is numerically simulated on the unstructured mesh. Computational results demonstrate the effects of the magnetic field and agree well with those from references.展开更多
基金Projects(03JJY3078, 04JJ40032) supported by the Natural Science Foundation of Hunan Province, China project(03A006) supported by Scientific Research Fund of Hunan Provincial Education Department, China
文摘Based on the analysis method for tailings dam in upstream raising method presently used in metallurgy and nonferrous metals tailings depository in the world, an effective stress analysis method of seismic response for high tailings dam was developed according to the results of engineering geological exploration, static and dynamic test and stability analysis on Baizhishan tailing dam 113.5 m high. The law of generation, diffusion and dissipation of seismic pore water pressure during and after earthquake was investigated, and the results of tailings dam’s acceleration, seismic dynamic stress and pore water pressure were obtained. The results show that the seismic stability and liquefaction resistance of high tailings dam are strengthened remarkably, and the scope and depth of liquefaction area at the top of dam are reduced greatly. The interior stress is compressive stress, the stress level of every element is less than 1.0 and the safety coefficient of every element is greater than 1.0. The safety coefficient against liquefaction of every element of tailing dam is greater than 1.5 according to the effective stress analysis of seismic response by finite element method. The calculated results prove that liquefaction is the main reason of seismic failure of high tailing dams, and the effect of seismic inertia forces on high tailing dams’ stability during earthquake is secondary reason.
文摘在对高压直流(HVDC)输电线路下的电磁环境进行预测时,地面合成场强和离子流密度的计算问题实际上是一个多维非线性问题。在对剖分单元进行处理时,为了解决传统的有限元方法、上流有限元法采取线性假设与线性插值,存在计算量大、精度差、算法效率低的问题,提出一种新的非线性空间电荷密度插值方法,从理论上推导了算法的实现过程,并基于上流有限元方法对离子电流密度方程进行迭代求解。采用该算法对现场运行的±500 k V和±800 k V输电线路离子流场进行了理论计算与现场实地测量,并将理论计算结果与实际测量结果进行了对比,结果表明:所提出的算法能在减少计算量的同时提高计算的准确度。针对风速对双极离子流场影响的研究较少的情况,研究讨论了不同风速影响下的双极离子流场问题,得到了风速对双极离子流场地面最大合成场强和离子流密度影响的规律,为新的直流输电线路的设计提供了有力的参考。
文摘An upwind scheme based on the unstructured mesh is developed to solve ideal 2-D magnetohydrodynamics (MHD) equations. The inviscid fluxes are approximated by using the modified advection upstream splitting method (AUSM) scheme, and a 5-stage explicit Runge-Kutta scheme is adopted in the time integration. To avoid the influence of the magnetic field divergence created during the simulation, the hyperbolic divergence cleaning method is introduced. The shock-capturing properties of the method are verified by solving the MHD shock-tube problem. Then the 2-D nozzle flow with the magnetic field is numerically simulated on the unstructured mesh. Computational results demonstrate the effects of the magnetic field and agree well with those from references.