期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
上三角算子矩阵的本征函数展开法在应力形式的二维弹性问题中的应用
1
作者 额布日力吐 阿拉坦仓 《应用数学和力学》 CSCD 北大核心 2012年第2期221-230,共10页
深入研究了求解基于应力形式的二维弹性问题的本征函数展开法.根据已有的研究结果,将基于应力形式的二维弹性问题的基本偏微分方程组等价地转化为上三角微分系统,并导出了相应的上三角算子矩阵.通过深入研究,分别获得了该算子矩阵的两... 深入研究了求解基于应力形式的二维弹性问题的本征函数展开法.根据已有的研究结果,将基于应力形式的二维弹性问题的基本偏微分方程组等价地转化为上三角微分系统,并导出了相应的上三角算子矩阵.通过深入研究,分别获得了该算子矩阵的两个对角块算子更为简洁的正交本征函数系,并证明了它们在相应空间中的完备性,进而应用本征函数展开法给出了该二维弹性问题的更为简洁实用的一般解.此外,对该二维弹性问题,还指出了什么样的边界条件可以应用此方法求解.最后应用具体的算例验证了所得结论的合理性. 展开更多
关键词 本征函数展开法 二维弹性问题 上三角算子矩阵 一般解
在线阅读 下载PDF
An Operator on Ascent Sequences
2
作者 YING Changtian YU Jiong 《Wuhan University Journal of Natural Sciences》 CAS 2014年第4期289-294,共6页
We solve two problems about ascent sequences: how to get the ascent sequence of the reflection of A with respect to its antidiagonal for a matrix A ∈ Intn and its ascent sequences, and how to determine the ascent se... We solve two problems about ascent sequences: how to get the ascent sequence of the reflection of A with respect to its antidiagonal for a matrix A ∈ Intn and its ascent sequences, and how to determine the ascent sequence of A+B for kxk matrices A ∈ Int, and B ∈ Intm. We give the other definition of ascent se- quence and get M-sequence. For the first question, we define M-sequence of A and rewrite the ascent sequences as another form We build the bijection between M-sequences and ascent sequences and prove that our bijection is well-defined. For the second ques- tion, we define an operation on M-sequences. On the basis of the operation and the bijections, we get the ascent sequences of the sum of two matrices. 展开更多
关键词 ascent sequences BIJECTION antidiagonal uppertriangular matrices addition of two matrices
原文传递
中心McCoy环
3
作者 王文康 《华东师范大学学报(自然科学版)》 CAS CSCD 北大核心 2015年第3期67-79,共13页
给出了中心McCoy环的性质.证明了:环R是中心McCoy环当且仅当R[x]是中心McCoy环当且仅当R[x]/(x^n)是中心McCoy环.设R是右Ore环,Q是它的右商环,如果R是中心McCoy环,那么Q是中心McCoy环。
关键词 McCoy环中心McCoy环 中心Armendariz环 上三角矩阵环
在线阅读 下载PDF
Some remarks on one-sided regularity
4
作者 Tai Keun KWAK Yang LEE Young Joo SEO 《Frontiers of Mathematics in China》 SCIE CSCD 2018年第4期833-847,共15页
A ring is said to be right (resp., left) regular-duo if every right (resp., left) regular element is regular. The structure of one-sided regular elements is studied in various kinds of rings, especially, upper tri... A ring is said to be right (resp., left) regular-duo if every right (resp., left) regular element is regular. The structure of one-sided regular elements is studied in various kinds of rings, especially, upper triangular matrix rings over one-sided Ore domains. We study the structure of (one-sided) regular-duo rings, and the relations between one-sided regular-duo rings and related ring theoretic properties. 展开更多
关键词 right (left) regular element right (left) regular-duo ring uppertriangular matrix ring right (left) Ore domain
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部