Let T(R) be a two-order upper matrix algebra over the semilocal ring R which is determined by R=F×F where F is a field such that CharF=0. In this paper, we prove that any Jordan automorphism of T(R) can be decomp...Let T(R) be a two-order upper matrix algebra over the semilocal ring R which is determined by R=F×F where F is a field such that CharF=0. In this paper, we prove that any Jordan automorphism of T(R) can be decomposed into a product of involutive, inner and diagonal automorphisms.展开更多
Let R be a commutative ring with identity, Tn (R) the R-algebra of all upper triangular n by n matrices over R. In this paper, it is proved that every local Jordan derivation of Tn (R) is an inner derivation and t...Let R be a commutative ring with identity, Tn (R) the R-algebra of all upper triangular n by n matrices over R. In this paper, it is proved that every local Jordan derivation of Tn (R) is an inner derivation and that every local Jordan automorphism of Tn(R) is a Jordan automorphism. As applications, we show that local derivations and local automorphisms of Tn (R) are inner.展开更多
Let F be a field, n ≥ 3, N(n,F) the strictly upper triangular matrix Lie algebra consisting of the n × n strictly upper triangular matrices and with the bracket operation {x, y} = xy-yx. A linear map φ on N(...Let F be a field, n ≥ 3, N(n,F) the strictly upper triangular matrix Lie algebra consisting of the n × n strictly upper triangular matrices and with the bracket operation {x, y} = xy-yx. A linear map φ on N(n,F) is said to be a product zero derivation if {φ(x),y] + [x, φ(y)] = 0 whenever {x, y} = 0,x,y ∈ N(n,F). In this paper, we prove that a linear map on N(n, F) is a product zero derivation if and only if φ is a sum of an inner derivation, a diagonal derivation, an extremal product zero derivation, a central product zero derivation and a scalar multiplication map on N(n, F).展开更多
Let Nn(R)be the algebra consisting of all strictly upper triangular n × n matrices over a commutative ring R with the identity.An R-bilinear map φ :Nn(R)×Nn(R)→ Nn(R)is called a biderivation if it...Let Nn(R)be the algebra consisting of all strictly upper triangular n × n matrices over a commutative ring R with the identity.An R-bilinear map φ :Nn(R)×Nn(R)→ Nn(R)is called a biderivation if it is a derivation with respect to both arguments.In this paper,we define the notions of central biderivation and extremal biderivation of Nn(R),and prove that any biderivation of Nn(R)can be decomposed as a sum of an inner biderivation,central biderivation and extremal biderivation for n ≥ 5.展开更多
文摘Let T(R) be a two-order upper matrix algebra over the semilocal ring R which is determined by R=F×F where F is a field such that CharF=0. In this paper, we prove that any Jordan automorphism of T(R) can be decomposed into a product of involutive, inner and diagonal automorphisms.
基金Supported by the Doctor Foundation of Henan Polytechnic University (Grant No. B2010-93)
文摘Let R be a commutative ring with identity, Tn (R) the R-algebra of all upper triangular n by n matrices over R. In this paper, it is proved that every local Jordan derivation of Tn (R) is an inner derivation and that every local Jordan automorphism of Tn(R) is a Jordan automorphism. As applications, we show that local derivations and local automorphisms of Tn (R) are inner.
基金Supported by the National Natural Science Foundation of China(Grant No.11101084)the Natural Science Foundation of Fujian Province(Grant No.2013J01005)
文摘Let F be a field, n ≥ 3, N(n,F) the strictly upper triangular matrix Lie algebra consisting of the n × n strictly upper triangular matrices and with the bracket operation {x, y} = xy-yx. A linear map φ on N(n,F) is said to be a product zero derivation if {φ(x),y] + [x, φ(y)] = 0 whenever {x, y} = 0,x,y ∈ N(n,F). In this paper, we prove that a linear map on N(n, F) is a product zero derivation if and only if φ is a sum of an inner derivation, a diagonal derivation, an extremal product zero derivation, a central product zero derivation and a scalar multiplication map on N(n, F).
基金Supported by the National Natural Science Foundation of China(GrantNo.10971117)
文摘Let Nn(R)be the algebra consisting of all strictly upper triangular n × n matrices over a commutative ring R with the identity.An R-bilinear map φ :Nn(R)×Nn(R)→ Nn(R)is called a biderivation if it is a derivation with respect to both arguments.In this paper,we define the notions of central biderivation and extremal biderivation of Nn(R),and prove that any biderivation of Nn(R)can be decomposed as a sum of an inner biderivation,central biderivation and extremal biderivation for n ≥ 5.
基金Supported by National Natural Science Foundation of China(1112612111426093)+3 种基金Doctor Foundation of Henan Polytechnic University(B2010-93)Natural Science Research Program of Science and Technology Department of Henan Province(112300410120)Natural Science Research Program of Education Department of Henan Province(2011B110016)Applied Mathematics Provincial-level Key Discipline of Henan Province