Taking Zhejiang Province as an example,this paper explores the mechanisms and implementation pathways through which the low-altitude economy drives the transformation and upgrading of the tourism industry.It finds tha...Taking Zhejiang Province as an example,this paper explores the mechanisms and implementation pathways through which the low-altitude economy drives the transformation and upgrading of the tourism industry.It finds that the low-altitude economy can effectively promote the development of high-end and diversified tourism in Zhejiang by innovating tourism formats,optimizing resource allocation,and enhancing tourist experiences.Besides,it analyzes the current development status of the low-altitude economy in Zhejiang and its potential for integration with tourism,revealing specific enabling pathways for tourism transformation,including low-altitude sightseeing,aviation tourism,and low-altitude sports.Finally,it proposes policy recommendations such as strengthening policy support,enhancing infrastructure development,and cultivating market entities.The findings aim to provide theoretical references and practical guidance for the high-quality development of tourism in Zhejiang Province.展开更多
Integrating electrochemical upgrading of glycerol and water electrolysis is regarded as a promising and energy-saving approach for the co-production of chemicals and hydrogen.However,developing efficient electrocataly...Integrating electrochemical upgrading of glycerol and water electrolysis is regarded as a promising and energy-saving approach for the co-production of chemicals and hydrogen.However,developing efficient electrocatalyst towards this technology remains challenging.Herein,a metallic cobalt mediated molybdenum nitride heterostructural material has been exploited on nickel foam(Co@Mo_(2)N/NF)for the glycerol oxidation reaction(GOR)and hydrogen evolution reaction(HER).Remarkably,the obtained Co@Mo_(2)N/NF realizes eminent performance with low overpotential of 49 mV at 50 mA/cm^(2)for HER and high Faradaic efficiency of formate of 95.03%at 1.35 V vs.RHE for GOR,respectively.The systematic in-situ experiments reveal that the Co@Mo_(2)N heterostructure promotes the cleavage of C-C bond in glycerol by active CoOOH species and boosts the conversion of glycerol to aldehyde intermediates to formate product.Moreover,the density functional theory(DFT)calculations confirm the strong interaction at Co@Mo_(2)N interface,which contributes to the optimized water dissociation and the transformation of H^(*)to H^(2).Benefiting from those advantages,the built HER||GOR electrolyzer delivers a low voltage of 1.61 V at 50 mA/cm^(2),high Faradaic efficiency,and robust stability over 120 h for sustained and stable electrolysis.展开更多
Transition metal-based electrocatalysts are a promising alternative to noble metal catalysts for electrochemical upgrading of biomass-derived 5-hydroxymethylfurfural(HMF)into high-value 2,5-furandicarboxylic acid(FDCA...Transition metal-based electrocatalysts are a promising alternative to noble metal catalysts for electrochemical upgrading of biomass-derived 5-hydroxymethylfurfural(HMF)into high-value 2,5-furandicarboxylic acid(FDCA).However,the rational design of efficient electrocatalysts with precisely tailored structure-activity correlations remains a critical challenge.Herein,we report a hierarchically structured self-supporting electrode(Vo-NiCo(OH)_(2)-NF)synthesized through in situ electrochemical reconstruction of NiCo-Prussian blue analogue(NiCo-PBA)precursor,in which oxygen vacancy(Vo)-rich Co-doped Ni(OH)_(2)nanosheet arrays are vertically aligned on nickel foam(NF),creating an interconnected conductive network.When evaluated for the HMF oxidation reaction(HMFOR),Vo-NiCo(OH)_(2)-NF exhibits exceptional electrochemical performance,achieving near-complete HMF conversion(99%),ultrahigh FDCA Faradaic efficiency(97.5%),and remarkable product yield(96.2%)at 1.45 V,outperforming conventional Co-doped Ni(OH)_(2)(NiCo(OH)_(2)-NF)and pristine Ni(OH)_(2)(Ni(OH)_(2)-NF)electrodes.By combining in situ spectroscopic characterization and theoretical calculations,we elucidate that the synergistic effects of Co-doping and oxygen vacancy engineering effectively modulate the electronic structure of Ni active centers,favor the formation of high-valent Ni^(3+)species,and optimize HMF adsorption,thereby improving the HMFOR performance.This work provides valuable mechanistic insights for catalyst design and may inspire the development of advanced transition metal-based electrodes for efficient biomass conversion systems.展开更多
Photocatalytic selective synthesis of lactic acid(LA)from biomass sugars with a single heterogeneous catalyst is promising but challenging due to the multiple reaction steps involved.Herein,a K-doped C-rich red polyme...Photocatalytic selective synthesis of lactic acid(LA)from biomass sugars with a single heterogeneous catalyst is promising but challenging due to the multiple reaction steps involved.Herein,a K-doped C-rich red polymerized carbon nitride(RPCN)photocatalyst with uniform K/C dual sites was constructed by a molten salt template method,which was highly efficient for cascade isomerization dehydration of glucose to LA with>90%selectivity under visible light and gentle conditions.Control experiments and theoretical calculations expounded that the introduced K/C dual sites could improve the light capture ability and photogenerated charge separation efficiency,while the K species provided sufficient Lewis acid sites(adsorption sites)for the isomerization of glucose to fructose.Meanwhile,the introduced C sites that substitute N atoms could promote electrons to be captured by adsorbed oxygen for selective generation of superoxide radicals,which was highly efficient for the scission of the C3-C4 bond in fructose,exclusively furnishing LA.Importantly,the RPCN photocatalyst was also suitable for the photocatalytic upgrading of various biomass saccharides into LA with high yields of 81.3%-95.3%and could be recycled for five consecutive cycles.The tailored construction of dual sites by localization of space charge lightens an avenue for multi-step conversion of biomass with pronounced selectivity.展开更多
With the swift advancement of the modern economy,the digital economy has progressively merged into various sectors.By leveraging cutting-edge information technology,it has become a pivotal strategy to enhance both pro...With the swift advancement of the modern economy,the digital economy has progressively merged into various sectors.By leveraging cutting-edge information technology,it has become a pivotal strategy to enhance both production efficiency and quality,representing the inevitable route for the transformation and upgrading of modern enterprises and industries.As the digital economy continues to develop and spread,technology has not only given rise to numerous new industries but also fostered a conducive environment for the transformation and upgrading of traditional sectors.This study takes this context as its research backdrop,examining the development background of the digital economy.It outlines the impact mechanisms through which the digital economy influences industrial structure upgrading and subsequently identifies the specific effects of the digital economy on such upgrades.Furthermore,it constructs a reform paradigm for the digital economy aimed at facilitating the upgrading of industrial structures.展开更多
Developing energy-efficient nitrite-to-ammonia(NO_(2)RR)conversion technologies while simultaneously enabling the electrochemical upcycling of waste polyethylene terephthalate(PET)plastics into highvalue-added chemica...Developing energy-efficient nitrite-to-ammonia(NO_(2)RR)conversion technologies while simultaneously enabling the electrochemical upcycling of waste polyethylene terephthalate(PET)plastics into highvalue-added chemicals is of great significance.Herein,an atomic oxygen vacancy(V_(o))engineering is developed to optimize the catalytic performance of V_(o2)-Co(OH)F nanoarray towards the NO_(2)RR and PET-derived ethylene glycol oxidation reaction(EGOR).The optimal V_(o2)-Co(OH)F achieves an ultralow operating potential of -0.03 V vs.RHE at -100 mA cm^(-2)and a remarkable NH_(3)Faradaic efficiency(FE)of 98.4% at -0.2 V vs.RHE for NO_(2)RR,and a high formate FE of 98.03% for EGOR.Operando spectroscopic analysis and theoretical calculations revealed that oxygen vacancies play a crucial role in optimizing the electronic structure of V_(o2)-Co(OH)F,modulating the adsorption free energies of key reaction intermediates,and lowering the reaction energy barrier,thereby enhancing its overall catalytic performance.Remarkably,the V_(o2)-Co(OH)F-based NO_(2)RR||EGOR electrolyzer realized high NH_(3)and formate yield rates of 33.9 and 44.9 mg h^(-1)cm^(-2)at 1.7 V,respectively,while demonstrating outstanding long-term stability over 100 h.This work provides valuable insights into the rational design of advanced electrocatalysts for co-electrolysis systems.展开更多
To satisfy the increasing global energy demand,while searching for new energy sources,it’s important to take a closer look at the resources already at our disposal and optimize their use.This comprehensive review exp...To satisfy the increasing global energy demand,while searching for new energy sources,it’s important to take a closer look at the resources already at our disposal and optimize their use.This comprehensive review explores the evolving landscape of unconventional oil resources,focusing on the environmental and economic implica-tions of bitumen partial upgrading technologies,particularly within the Canadian context.With over 55%of the world’s oil reserves comprising of unconventional oil,which includes extra-heavy oil and oil sand bitumen,there is a growing trend to shift from traditional oil sources to these abundant yet under-utilized reserves.This review delves into the challenges and advancements in bitumen partial upgrading,highlighting the latest technologies in thermal cracking,hydrocracking,catalytic cracking,and innovative methods like surfactant integration,cavi-tation,microwave,and plasma-assisted upgrading.It also discusses the environmental implications and eco-nomic feasibility of these technologies,emphasizing the necessity for sustainable and cost-effective solutions at petroleum field sites.Furthermore,the report introduces the transformative concept of Bitumen Beyond Com-bustion(BBC),which explores the non-combustion uses of bitumen and its asphaltene fraction in manufacturing high-value carbon-based products.These novel approaches align with global sustainability goals,offering the potential for significant reductions in greenhouse gas emissions and new routes to diversify the economic ap-plications of bitumen.The review then concludes with an assessment of current challenges and future research directions,advocating for a balanced approach that harmonizes technological innovation,environmental stewardship,and economic viability in the field of bitumen upgrading.展开更多
Cross-border e-commerce has emerged as a new growth point in foreign trade.While the Dalian comprehensive pilot zone has made some progress,its development is constrained by issues such as the global economic slowdown...Cross-border e-commerce has emerged as a new growth point in foreign trade.While the Dalian comprehensive pilot zone has made some progress,its development is constrained by issues such as the global economic slowdown,the relatively small scale of cross-border e-commerce,a high concentration of export commodities,imperfect information mechanisms,and high overall costs.To address these challenges,this paper explores the importance of the construction of the Dalian comprehensive pilot zone for cross-border e-commerce to the transformation and upgrading of exports.Based on my research project,“Research on Path Optimization of Financial Support for the Development of Advanced Manufacturing Clusters in Dalian,”this paper analyzes the current challenges and limiting factors and proposes corresponding countermeasures and suggestions.展开更多
Under the background of this era,green finance and the upgrading and optimization of industrial structure have become a hot research topic.The article focuses on Jiangsu Province,carefully explores the impact of green...Under the background of this era,green finance and the upgrading and optimization of industrial structure have become a hot research topic.The article focuses on Jiangsu Province,carefully explores the impact of green financial development on the upgrading and optimization of industrial structure and the real effect,collates and summarizes the theories of green finance and industrial structure at home and abroad,and carefully analyzes the development of green finance in Jiangsu Province,such as the gradual expansion of green credit scale,the characteristics of industrial structure,the change of the proportion of three industries,the development situation of emerging industries and so on.By means of econometrics,an empirical model covering Green Financial Development Indicators and industrial structure optimization indicators is established to do multiple linear regression analysis and stability test.The empirical results show that the development of green finance in Jiangsu plays an obvious positive role in the optimization and upgrading of industrial structure.Green finance is environmental protection,new energy and other green industries are given important financial support,which drives their scale expansion and technological innovation,and makes the industrial structure develop towards a higher level and a more reasonable direction.From this point of view,corresponding proposals are put forward to improve the policy incentive system,add green financial products,and strengthen the construction of green financial market.The purpose is to give better play to the advantages of green finance,accelerate the optimization and upgrading of industrial structure in Jiangsu,and provide theoretical basis and practical guidance for achieving green economic transformation and sustainable development.展开更多
With the deepening of international agricultural division of labor,trade methods have shifted from traditional bilateral trade to agricultural global value chain(AGVC)trade.Sanitary and Phytosanitary(SPS)measures are ...With the deepening of international agricultural division of labor,trade methods have shifted from traditional bilateral trade to agricultural global value chain(AGVC)trade.Sanitary and Phytosanitary(SPS)measures are a crucial factor affecting agricultural trade and a key variable in AGVC governance.This paper,based on the 2012-2020 University of International Business and Economics Global Value Chain Index(UIBE GVC Index)and the United Nations Conference on Trade and Development Non-Tariff Measures Database(UNCTAD NTMs Database),measures the structural heterogeneity and breadth heterogeneity of SPS measures.It also constructs mathematical models and fixed-effects models to explore the impact of SPS heterogeneity on AGVC upgrading.The findings reveal that the heterogeneity of SPS measures exerts a significant inhibitory effect on the upgrading of agricultural global value chains.Moreover,compared to developed countries,a reduction in SPS measures’heterogeneity demonstrates a more pronounced positive impact on AGVC upgrading in developing countries.展开更多
ESG(Environmental,Social,and Governance)performance has emerged as a central metric in assessing corporate sustainability.Utilizing ESG rating data for A-share listed companies on the Shanghai Stock Exchange spanning ...ESG(Environmental,Social,and Governance)performance has emerged as a central metric in assessing corporate sustainability.Utilizing ESG rating data for A-share listed companies on the Shanghai Stock Exchange spanning from 2019 to 2022,coupled with measures of corporate transformation and upgrading,this study introduces green innovation as a mediating variable to dissect the impact of ESG ratings on corporate transformation and upgrading.The key findings of this research are as follows:(1)ESG ratings positively influence corporate transformation and upgrading,a conclusion that retains robustness after a comprehensive series of tests and discussions on endogeneity.(2)Mechanism analysis reveals that ESG ratings foster corporate transformation and upgrading by enhancing corporate green innovation.(3)In comparison with other industries,the influence of ESG ratings on corporate transformation and upgrading is notably more pronounced among heavily polluting industries among listed companies in China.Additionally,ESG ratings exhibit a more significant promotional effect on non-state-owned enterprises compared to state-owned enterprises.Larger enterprises play a more substantial role in transformation and upgrading than small and medium-sized enterprises.The promotional effect of ESG ratings is more evident in enterprises with poor information disclosure quality.Furthermore,as media attention increases,so does the impact of ESG ratings on corporate transformation.This study offers valuable policy insights from the ESG rating perspective,aiming to propel corporate transformation and upgrading,thereby contributing to economic high-quality and sustainable development.展开更多
BACKGROUND The discrepancy between endoscopic biopsy pathology and the overall pathology of gastric low-grade intraepithelial neoplasia(LGIN)presents challenges in developing diagnostic and treatment protocols.AIM To ...BACKGROUND The discrepancy between endoscopic biopsy pathology and the overall pathology of gastric low-grade intraepithelial neoplasia(LGIN)presents challenges in developing diagnostic and treatment protocols.AIM To develop a risk prediction model for the pathological upgrading of gastric LGIN to aid clinical diagnosis and treatment.METHODS We retrospectively analyzed data from patients newly diagnosed with gastric LGIN who underwent complete endoscopic resection within 6 months at the First Medical Center of Chinese People’s Liberation Army General Hospital between January 2008 and December 2023.A risk prediction model for the pathological progression of gastric LGIN was constructed and evaluated for accuracy and clinical applicability.RESULTS A total of 171 patients were included in this study:93 patients with high-grade intraepithelial neoplasia or early gastric cancer and 78 with LGIN.The logistic stepwise regression model demonstrated a sensitivity and specificity of 0.868 and 0.800,respectively,while the least absolute shrinkage and selection operator(LASSO)regression model showed sensitivity and specificity values of 0.842 and 0.840,respectively.The area under the curve(AUC)for the logistic model was 0.896,slightly lower than the AUC of 0.904 for the LASSO model.Internal validation with 30%of the data yielded AUC scores of 0.908 for the logistic model and 0.905 for the LASSO model.The LASSO model provided greater utility in clinical decision-making.CONCLUSION A risk prediction model for the pathological upgrading of gastric LGIN based on white-light and magnifying endoscopic features can accurately and effectively guide clinical diagnosis and treatment.展开更多
In-situ upgrading by heating is feasible for low-maturity shale oil,where the pore space dynamically evolves.We characterize this response for a heated substrate concurrently imaged by SEM.We systematically follow the...In-situ upgrading by heating is feasible for low-maturity shale oil,where the pore space dynamically evolves.We characterize this response for a heated substrate concurrently imaged by SEM.We systematically follow the evolution of pore quantity,size(length,width and cross-sectional area),orientation,shape(aspect ratio,roundness and solidity)and their anisotropy—interpreted by machine learning.Results indicate that heating generates new pores in both organic matter and inorganic minerals.However,the newly formed pores are smaller than the original pores and thus reduce average lengths and widths of the bedding-parallel pore system.Conversely,the average pore lengths and widths are increased in the bedding-perpendicular direction.Besides,heating increases the cross-sectional area of pores in low-maturity oil shales,where this growth tendency fluctuates at<300℃ but becomes steady at>300℃.In addition,the orientation and shape of the newly-formed heating-induced pores follow the habit of the original pores and follow the initial probability distributions of pore orientation and shape.Herein,limited anisotropy is detected in pore direction and shape,indicating similar modes of evolution both bedding-parallel and bedding-normal.We propose a straightforward but robust model to describe evolution of pore system in low-maturity oil shales during heating.展开更多
The appropriate regulation of band structure is an effective strategy in constructing efficient photocatalytic systems.Present photocatalytic system mainly employs powder photocatalysts,which makes their recovery reli...The appropriate regulation of band structure is an effective strategy in constructing efficient photocatalytic systems.Present photocatalytic system mainly employs powder photocatalysts,which makes their recovery reliant on expensive separation processes and severely limits their industrial application.Herein,we constructed a novel CdS/Ni_(3)S_(2)heterostructure using free-standing and flexible nickel fiber paper as the matrix.The regulated energy band structure achieves effective electron–hole separation.The as-synthesized flexible photocatalyst exhibits considerable photocatalytic activity toward the H_(2)evolution reaction under visible-light irradiation,with an H_(2)production rate of5.63μmol·cm^(-2)·h^(-1)(14.1 mmol·g^(-1)cat·h^(-1)according to the catalyst loading content).Additionally,the otherwisewasted excited holes simultaneously drive organic transformations to yield value-added organic products,thus markedly improving the photocatalytic H_(2)evolution rate.Such a photocatalytic system is scaled up further,where a self-supported 20 cm×25 cm sample achieves a champion H_(2)production rate of 60-80μmol·h^(-1)under practical sun irradiation.This newly developed self-supported photocatalyst produces opportunities for practical solar H2production with biomass upgrading.展开更多
Global population aging trends are intensifying,presenting multifaceted economic and social challenges for countries worldwide.As the world’s largest developing country,China has entered a phase of extreme demographi...Global population aging trends are intensifying,presenting multifaceted economic and social challenges for countries worldwide.As the world’s largest developing country,China has entered a phase of extreme demographic aging,posing significant questions about its impact on the ongoing upgrading of industrial structures.How does this demographic shift influence the upgrading of industrial structures,and does technological innovation mitigate or exacerbate this impact?The empirical results indicate that population aging impedes upgrading the industrial structure,while technological innovation positively affects the relationship between the two.Moreover,using technological innovation as a threshold variable,the impact of population aging on industrial structure upgrading evolves in a“gradient”manner from“impediment”to“insignificant”to“promotion”as the technological innovation levels increase.These findings offer practical guidance for tailoring industrial policies to different stages of technological advancement.展开更多
With the rise of the global digital economy and the deep integration of digital technology into traditional manufacturing operations,cross-border e-commerce provides a new commercial model and pathways for transformin...With the rise of the global digital economy and the deep integration of digital technology into traditional manufacturing operations,cross-border e-commerce provides a new commercial model and pathways for transforming and upgrading Dongguan’s traditional manufacturing industry.It also offers perspectives for enhancing the integration of online and offline operations while advancing the industrial Internet process.This study examines the impact of cross-border e-commerce on Dongguan manufacturing,highlighting its role in improving production efficiency,expanding international markets,and driving industrial upgrading through product enhancement,supply chain optimization,and innovative business models.By incorporating practical cases and data analysis from Dongguan enterprises,this study investigates the benefits and challenges of cross-border e-commerce in the transformation of the manufacturing industry,aiming to offer a reference for enterprise digital transformation and global competitive strategies.展开更多
China has made great achievements in industrial development and is transforming into a powerful manufacturing country.Meanwhile,the industrial land scale is also expanding.However,whether industrial structure upgradin...China has made great achievements in industrial development and is transforming into a powerful manufacturing country.Meanwhile,the industrial land scale is also expanding.However,whether industrial structure upgrading achieves the purpose of restraining industrial land expansion remains unanswered.By calculating the industrial land structure index(ILSI)and industrial land expansion scale(ILES),this study analyzed their temporal and spatial distribution characteristics at both regional and city levels from 2007to 2020 in China.Results show that industrial land expansion presents a different trend in the four regions,the ILES in the eastern region is the largest,and the speed of industrial land expansion has declined since 2013,but it has gradually increased since 2016.The ILSI of the eastern and central regions is higher than that of the western and northeastern regions.Furthermore,a spatial Durbin model(SDM)has been established to estimate the spatial effect of industrial structure upgrading on industrial land expansion from 2007 to2020.Notably,industrial structure upgrading has not slowed industrial land expansion.The eastern and western regions require a greater amount of industrial land while upgrading the industrial structure.The improvement of the infrastructure level and international trade level has promoted industrial land expansion.展开更多
Based on the background of the revitalization of Northeast China and industrial transformation,with the goal of serving society with design,leading the future with design,and revitalizing the economy with design,we ad...Based on the background of the revitalization of Northeast China and industrial transformation,with the goal of serving society with design,leading the future with design,and revitalizing the economy with design,we adhere to the innovative,comprehensive and cultural design talent cultivation concept,fully practice the“student-centered,output-oriented,continuously-improving”educational philosophy taking quality as the first priority,and continuously improve the theoretical system and implementation path for cultivation of postgraduate talents in design science,hoping to optimize the entire process of talent cultivation.Meanwhile,on the basis of“fostering character and civic virtue,cultivating people in a three-all manner,and cultivating people from five aspects simultaneously”,we cultivate high-quality design talents with brand-new models and ideas,through a series of educational reform measures,such as strategic cooperation,resource integration,systematic sorting,quality improvement,standard formulation,strengthening characteristics,platform construction,so that the quality of talents and social development can be perfectly integrated and mutually assist each other to achieve a win-win effect,and the training of design talents can be implemented and serve the society.展开更多
China's economic growth and economic development has entered a new stage,and the optimization and upgrading of industrial structure is the core driving force for China to achieve high-quality economic development ...China's economic growth and economic development has entered a new stage,and the optimization and upgrading of industrial structure is the core driving force for China to achieve high-quality economic development during the"14 th Five-Year Plan"period.Property tax has a conductive effect on the upgrading of industrial structure.Therefore,from the perspective of property tax and industrial structure adjustment and the relationship between them,this study summarizes the relevant research of domestic and foreign scholars.On the basis of the research,the paper puts forward some relevant policy suggestions on improving China's property tax and promoting the optimization and upgrading of China's industrial structure.展开更多
To extend the practical application of biomass upgrading conversion to liquid fuel,it is crucial to develop highly catalytic and reversible nonprecious metal catalysts.Herein,we propose a high-throughput density funct...To extend the practical application of biomass upgrading conversion to liquid fuel,it is crucial to develop highly catalytic and reversible nonprecious metal catalysts.Herein,we propose a high-throughput density functional theory(DFT)approach to design a high-efficiency catalyst for the selective electrocatalytic upgrading of vanillin via hydrodeoxygenation(HDO).The optimal pyridinic and pyrrolic nitrogen carbon transition metal(TM)-based monolayers exhibit excellent activity for producing2-methoxy-4-methylphenol(MMP)from vanillin.The pyridinic and pyrrolic nitrogen carbon substrates can provide unique sites to support TM atoms,and TM-pyridinic or pyrrolic N moieties serve as catalytic activity sites for the electrocatalytic upgrading of vanillin.Our DFT calculations suggest that the pyridinic N@TM(TM=Zr,Ru,Rh,Os and Ir)and pyrrolic N@TM(TM=Rh and Os)catalysts possess high activity for MMP synthesized from vanillin,and they have a relatively small limiting potential(U_(L))of the rate-determining step.A new route reaction path was used to explore the activity of metal nitrogendoped carbon catalysts,finding that a single metal atom through strong electron correlation between metal and N_(4)C_(8)sites can improve the activity of the vanillin HDO process.Our results show that pyridinic N@Ir and pyrrolic N@Rh with limiting potential(U_(L))of 0.04 and 0.29 V are the most preferable candidate catalysts for the vanillin HDO process.The high stability and relatively low|U_(L)|for vanillin electrocatalytic upgrading are the best candidate electrocatalysts.This work proposes new ideas for designing and developing novel catalysts for selective HDO of biomass under real conditions.展开更多
文摘Taking Zhejiang Province as an example,this paper explores the mechanisms and implementation pathways through which the low-altitude economy drives the transformation and upgrading of the tourism industry.It finds that the low-altitude economy can effectively promote the development of high-end and diversified tourism in Zhejiang by innovating tourism formats,optimizing resource allocation,and enhancing tourist experiences.Besides,it analyzes the current development status of the low-altitude economy in Zhejiang and its potential for integration with tourism,revealing specific enabling pathways for tourism transformation,including low-altitude sightseeing,aviation tourism,and low-altitude sports.Finally,it proposes policy recommendations such as strengthening policy support,enhancing infrastructure development,and cultivating market entities.The findings aim to provide theoretical references and practical guidance for the high-quality development of tourism in Zhejiang Province.
基金financially supported by the National Natural Science Foundation of China(No.22205205)the Natural Science Foundation of Zhejiang Province(No.LQ24E040002)the Science Foundation of Zhejiang Sci-Tech University(ZSTU)(Nos.21062337Y,LW-YP2024076)。
文摘Integrating electrochemical upgrading of glycerol and water electrolysis is regarded as a promising and energy-saving approach for the co-production of chemicals and hydrogen.However,developing efficient electrocatalyst towards this technology remains challenging.Herein,a metallic cobalt mediated molybdenum nitride heterostructural material has been exploited on nickel foam(Co@Mo_(2)N/NF)for the glycerol oxidation reaction(GOR)and hydrogen evolution reaction(HER).Remarkably,the obtained Co@Mo_(2)N/NF realizes eminent performance with low overpotential of 49 mV at 50 mA/cm^(2)for HER and high Faradaic efficiency of formate of 95.03%at 1.35 V vs.RHE for GOR,respectively.The systematic in-situ experiments reveal that the Co@Mo_(2)N heterostructure promotes the cleavage of C-C bond in glycerol by active CoOOH species and boosts the conversion of glycerol to aldehyde intermediates to formate product.Moreover,the density functional theory(DFT)calculations confirm the strong interaction at Co@Mo_(2)N interface,which contributes to the optimized water dissociation and the transformation of H^(*)to H^(2).Benefiting from those advantages,the built HER||GOR electrolyzer delivers a low voltage of 1.61 V at 50 mA/cm^(2),high Faradaic efficiency,and robust stability over 120 h for sustained and stable electrolysis.
基金financial support of the National Natural Science Foundation of China(NSFC)(22372039 and 22305247)the Natural Science Foundation of Fujian Province of China(2021J06010)the Fuzhou University Testing Fund of Precious Apparatus(2025T022)。
文摘Transition metal-based electrocatalysts are a promising alternative to noble metal catalysts for electrochemical upgrading of biomass-derived 5-hydroxymethylfurfural(HMF)into high-value 2,5-furandicarboxylic acid(FDCA).However,the rational design of efficient electrocatalysts with precisely tailored structure-activity correlations remains a critical challenge.Herein,we report a hierarchically structured self-supporting electrode(Vo-NiCo(OH)_(2)-NF)synthesized through in situ electrochemical reconstruction of NiCo-Prussian blue analogue(NiCo-PBA)precursor,in which oxygen vacancy(Vo)-rich Co-doped Ni(OH)_(2)nanosheet arrays are vertically aligned on nickel foam(NF),creating an interconnected conductive network.When evaluated for the HMF oxidation reaction(HMFOR),Vo-NiCo(OH)_(2)-NF exhibits exceptional electrochemical performance,achieving near-complete HMF conversion(99%),ultrahigh FDCA Faradaic efficiency(97.5%),and remarkable product yield(96.2%)at 1.45 V,outperforming conventional Co-doped Ni(OH)_(2)(NiCo(OH)_(2)-NF)and pristine Ni(OH)_(2)(Ni(OH)_(2)-NF)electrodes.By combining in situ spectroscopic characterization and theoretical calculations,we elucidate that the synergistic effects of Co-doping and oxygen vacancy engineering effectively modulate the electronic structure of Ni active centers,favor the formation of high-valent Ni^(3+)species,and optimize HMF adsorption,thereby improving the HMFOR performance.This work provides valuable mechanistic insights for catalyst design and may inspire the development of advanced transition metal-based electrodes for efficient biomass conversion systems.
基金supported by the National Natural Science Foundation of China(Nos.22368014 and 22478087)Guizhou Provincial S&T Project(Nos.GCC[2023]011 and ZK[2022]011).
文摘Photocatalytic selective synthesis of lactic acid(LA)from biomass sugars with a single heterogeneous catalyst is promising but challenging due to the multiple reaction steps involved.Herein,a K-doped C-rich red polymerized carbon nitride(RPCN)photocatalyst with uniform K/C dual sites was constructed by a molten salt template method,which was highly efficient for cascade isomerization dehydration of glucose to LA with>90%selectivity under visible light and gentle conditions.Control experiments and theoretical calculations expounded that the introduced K/C dual sites could improve the light capture ability and photogenerated charge separation efficiency,while the K species provided sufficient Lewis acid sites(adsorption sites)for the isomerization of glucose to fructose.Meanwhile,the introduced C sites that substitute N atoms could promote electrons to be captured by adsorbed oxygen for selective generation of superoxide radicals,which was highly efficient for the scission of the C3-C4 bond in fructose,exclusively furnishing LA.Importantly,the RPCN photocatalyst was also suitable for the photocatalytic upgrading of various biomass saccharides into LA with high yields of 81.3%-95.3%and could be recycled for five consecutive cycles.The tailored construction of dual sites by localization of space charge lightens an avenue for multi-step conversion of biomass with pronounced selectivity.
文摘With the swift advancement of the modern economy,the digital economy has progressively merged into various sectors.By leveraging cutting-edge information technology,it has become a pivotal strategy to enhance both production efficiency and quality,representing the inevitable route for the transformation and upgrading of modern enterprises and industries.As the digital economy continues to develop and spread,technology has not only given rise to numerous new industries but also fostered a conducive environment for the transformation and upgrading of traditional sectors.This study takes this context as its research backdrop,examining the development background of the digital economy.It outlines the impact mechanisms through which the digital economy influences industrial structure upgrading and subsequently identifies the specific effects of the digital economy on such upgrades.Furthermore,it constructs a reform paradigm for the digital economy aimed at facilitating the upgrading of industrial structures.
基金financially supported by the National Natural Science Foundation of China(22205205)the Fundamental Research Funds of Zhejiang Sci-Tech University(ZSTU,25262157Y)the staff of beamline BL11B and BL13SSW at Shanghai Synchrotron Radiation Facility for experimental support。
文摘Developing energy-efficient nitrite-to-ammonia(NO_(2)RR)conversion technologies while simultaneously enabling the electrochemical upcycling of waste polyethylene terephthalate(PET)plastics into highvalue-added chemicals is of great significance.Herein,an atomic oxygen vacancy(V_(o))engineering is developed to optimize the catalytic performance of V_(o2)-Co(OH)F nanoarray towards the NO_(2)RR and PET-derived ethylene glycol oxidation reaction(EGOR).The optimal V_(o2)-Co(OH)F achieves an ultralow operating potential of -0.03 V vs.RHE at -100 mA cm^(-2)and a remarkable NH_(3)Faradaic efficiency(FE)of 98.4% at -0.2 V vs.RHE for NO_(2)RR,and a high formate FE of 98.03% for EGOR.Operando spectroscopic analysis and theoretical calculations revealed that oxygen vacancies play a crucial role in optimizing the electronic structure of V_(o2)-Co(OH)F,modulating the adsorption free energies of key reaction intermediates,and lowering the reaction energy barrier,thereby enhancing its overall catalytic performance.Remarkably,the V_(o2)-Co(OH)F-based NO_(2)RR||EGOR electrolyzer realized high NH_(3)and formate yield rates of 33.9 and 44.9 mg h^(-1)cm^(-2)at 1.7 V,respectively,while demonstrating outstanding long-term stability over 100 h.This work provides valuable insights into the rational design of advanced electrocatalysts for co-electrolysis systems.
文摘To satisfy the increasing global energy demand,while searching for new energy sources,it’s important to take a closer look at the resources already at our disposal and optimize their use.This comprehensive review explores the evolving landscape of unconventional oil resources,focusing on the environmental and economic implica-tions of bitumen partial upgrading technologies,particularly within the Canadian context.With over 55%of the world’s oil reserves comprising of unconventional oil,which includes extra-heavy oil and oil sand bitumen,there is a growing trend to shift from traditional oil sources to these abundant yet under-utilized reserves.This review delves into the challenges and advancements in bitumen partial upgrading,highlighting the latest technologies in thermal cracking,hydrocracking,catalytic cracking,and innovative methods like surfactant integration,cavi-tation,microwave,and plasma-assisted upgrading.It also discusses the environmental implications and eco-nomic feasibility of these technologies,emphasizing the necessity for sustainable and cost-effective solutions at petroleum field sites.Furthermore,the report introduces the transformative concept of Bitumen Beyond Com-bustion(BBC),which explores the non-combustion uses of bitumen and its asphaltene fraction in manufacturing high-value carbon-based products.These novel approaches align with global sustainability goals,offering the potential for significant reductions in greenhouse gas emissions and new routes to diversify the economic ap-plications of bitumen.The review then concludes with an assessment of current challenges and future research directions,advocating for a balanced approach that harmonizes technological innovation,environmental stewardship,and economic viability in the field of bitumen upgrading.
文摘Cross-border e-commerce has emerged as a new growth point in foreign trade.While the Dalian comprehensive pilot zone has made some progress,its development is constrained by issues such as the global economic slowdown,the relatively small scale of cross-border e-commerce,a high concentration of export commodities,imperfect information mechanisms,and high overall costs.To address these challenges,this paper explores the importance of the construction of the Dalian comprehensive pilot zone for cross-border e-commerce to the transformation and upgrading of exports.Based on my research project,“Research on Path Optimization of Financial Support for the Development of Advanced Manufacturing Clusters in Dalian,”this paper analyzes the current challenges and limiting factors and proposes corresponding countermeasures and suggestions.
基金The Impact of Digital Economy on Green Development Efficiency.2025 Nanjing University of Science and Technology Zijin College Campus Level Scientific Research Project(Project No.:2025ZXSK0401011)。
文摘Under the background of this era,green finance and the upgrading and optimization of industrial structure have become a hot research topic.The article focuses on Jiangsu Province,carefully explores the impact of green financial development on the upgrading and optimization of industrial structure and the real effect,collates and summarizes the theories of green finance and industrial structure at home and abroad,and carefully analyzes the development of green finance in Jiangsu Province,such as the gradual expansion of green credit scale,the characteristics of industrial structure,the change of the proportion of three industries,the development situation of emerging industries and so on.By means of econometrics,an empirical model covering Green Financial Development Indicators and industrial structure optimization indicators is established to do multiple linear regression analysis and stability test.The empirical results show that the development of green finance in Jiangsu plays an obvious positive role in the optimization and upgrading of industrial structure.Green finance is environmental protection,new energy and other green industries are given important financial support,which drives their scale expansion and technological innovation,and makes the industrial structure develop towards a higher level and a more reasonable direction.From this point of view,corresponding proposals are put forward to improve the policy incentive system,add green financial products,and strengthen the construction of green financial market.The purpose is to give better play to the advantages of green finance,accelerate the optimization and upgrading of industrial structure in Jiangsu,and provide theoretical basis and practical guidance for achieving green economic transformation and sustainable development.
文摘With the deepening of international agricultural division of labor,trade methods have shifted from traditional bilateral trade to agricultural global value chain(AGVC)trade.Sanitary and Phytosanitary(SPS)measures are a crucial factor affecting agricultural trade and a key variable in AGVC governance.This paper,based on the 2012-2020 University of International Business and Economics Global Value Chain Index(UIBE GVC Index)and the United Nations Conference on Trade and Development Non-Tariff Measures Database(UNCTAD NTMs Database),measures the structural heterogeneity and breadth heterogeneity of SPS measures.It also constructs mathematical models and fixed-effects models to explore the impact of SPS heterogeneity on AGVC upgrading.The findings reveal that the heterogeneity of SPS measures exerts a significant inhibitory effect on the upgrading of agricultural global value chains.Moreover,compared to developed countries,a reduction in SPS measures’heterogeneity demonstrates a more pronounced positive impact on AGVC upgrading in developing countries.
文摘ESG(Environmental,Social,and Governance)performance has emerged as a central metric in assessing corporate sustainability.Utilizing ESG rating data for A-share listed companies on the Shanghai Stock Exchange spanning from 2019 to 2022,coupled with measures of corporate transformation and upgrading,this study introduces green innovation as a mediating variable to dissect the impact of ESG ratings on corporate transformation and upgrading.The key findings of this research are as follows:(1)ESG ratings positively influence corporate transformation and upgrading,a conclusion that retains robustness after a comprehensive series of tests and discussions on endogeneity.(2)Mechanism analysis reveals that ESG ratings foster corporate transformation and upgrading by enhancing corporate green innovation.(3)In comparison with other industries,the influence of ESG ratings on corporate transformation and upgrading is notably more pronounced among heavily polluting industries among listed companies in China.Additionally,ESG ratings exhibit a more significant promotional effect on non-state-owned enterprises compared to state-owned enterprises.Larger enterprises play a more substantial role in transformation and upgrading than small and medium-sized enterprises.The promotional effect of ESG ratings is more evident in enterprises with poor information disclosure quality.Furthermore,as media attention increases,so does the impact of ESG ratings on corporate transformation.This study offers valuable policy insights from the ESG rating perspective,aiming to propel corporate transformation and upgrading,thereby contributing to economic high-quality and sustainable development.
基金Supported by the National Key Research and Development Program of China,No.2022YFC2503600。
文摘BACKGROUND The discrepancy between endoscopic biopsy pathology and the overall pathology of gastric low-grade intraepithelial neoplasia(LGIN)presents challenges in developing diagnostic and treatment protocols.AIM To develop a risk prediction model for the pathological upgrading of gastric LGIN to aid clinical diagnosis and treatment.METHODS We retrospectively analyzed data from patients newly diagnosed with gastric LGIN who underwent complete endoscopic resection within 6 months at the First Medical Center of Chinese People’s Liberation Army General Hospital between January 2008 and December 2023.A risk prediction model for the pathological progression of gastric LGIN was constructed and evaluated for accuracy and clinical applicability.RESULTS A total of 171 patients were included in this study:93 patients with high-grade intraepithelial neoplasia or early gastric cancer and 78 with LGIN.The logistic stepwise regression model demonstrated a sensitivity and specificity of 0.868 and 0.800,respectively,while the least absolute shrinkage and selection operator(LASSO)regression model showed sensitivity and specificity values of 0.842 and 0.840,respectively.The area under the curve(AUC)for the logistic model was 0.896,slightly lower than the AUC of 0.904 for the LASSO model.Internal validation with 30%of the data yielded AUC scores of 0.908 for the logistic model and 0.905 for the LASSO model.The LASSO model provided greater utility in clinical decision-making.CONCLUSION A risk prediction model for the pathological upgrading of gastric LGIN based on white-light and magnifying endoscopic features can accurately and effectively guide clinical diagnosis and treatment.
基金financially supported by the National Key Research and Development Program of China(Grant No.2022YFE0129800)the National Natural Science Foundation of China(Grant No.42202204)。
文摘In-situ upgrading by heating is feasible for low-maturity shale oil,where the pore space dynamically evolves.We characterize this response for a heated substrate concurrently imaged by SEM.We systematically follow the evolution of pore quantity,size(length,width and cross-sectional area),orientation,shape(aspect ratio,roundness and solidity)and their anisotropy—interpreted by machine learning.Results indicate that heating generates new pores in both organic matter and inorganic minerals.However,the newly formed pores are smaller than the original pores and thus reduce average lengths and widths of the bedding-parallel pore system.Conversely,the average pore lengths and widths are increased in the bedding-perpendicular direction.Besides,heating increases the cross-sectional area of pores in low-maturity oil shales,where this growth tendency fluctuates at<300℃ but becomes steady at>300℃.In addition,the orientation and shape of the newly-formed heating-induced pores follow the habit of the original pores and follow the initial probability distributions of pore orientation and shape.Herein,limited anisotropy is detected in pore direction and shape,indicating similar modes of evolution both bedding-parallel and bedding-normal.We propose a straightforward but robust model to describe evolution of pore system in low-maturity oil shales during heating.
基金supported by the National Natural Science Foundation of China(Nos.51972147,52022037 and 52202366)Taishan Scholars Project Special Funds(No.tsqn201812083),the Innovative Team Project of Jinan(No.2021GXRC019)+1 种基金the Natural Science Foundation of Shandong Province(Nos.ZR2019YQ20,ZR2021QE011,ZR2021JQ15 and ZR2022YQ42)the King Abdullah University of Science and Technology(KAUST)。
文摘The appropriate regulation of band structure is an effective strategy in constructing efficient photocatalytic systems.Present photocatalytic system mainly employs powder photocatalysts,which makes their recovery reliant on expensive separation processes and severely limits their industrial application.Herein,we constructed a novel CdS/Ni_(3)S_(2)heterostructure using free-standing and flexible nickel fiber paper as the matrix.The regulated energy band structure achieves effective electron–hole separation.The as-synthesized flexible photocatalyst exhibits considerable photocatalytic activity toward the H_(2)evolution reaction under visible-light irradiation,with an H_(2)production rate of5.63μmol·cm^(-2)·h^(-1)(14.1 mmol·g^(-1)cat·h^(-1)according to the catalyst loading content).Additionally,the otherwisewasted excited holes simultaneously drive organic transformations to yield value-added organic products,thus markedly improving the photocatalytic H_(2)evolution rate.Such a photocatalytic system is scaled up further,where a self-supported 20 cm×25 cm sample achieves a champion H_(2)production rate of 60-80μmol·h^(-1)under practical sun irradiation.This newly developed self-supported photocatalyst produces opportunities for practical solar H2production with biomass upgrading.
基金supported by the Research Center for Aging Career and Industrial Development,Sichuan Key Research Base of Social Sciences[Grant No.XJLL2022009].
文摘Global population aging trends are intensifying,presenting multifaceted economic and social challenges for countries worldwide.As the world’s largest developing country,China has entered a phase of extreme demographic aging,posing significant questions about its impact on the ongoing upgrading of industrial structures.How does this demographic shift influence the upgrading of industrial structures,and does technological innovation mitigate or exacerbate this impact?The empirical results indicate that population aging impedes upgrading the industrial structure,while technological innovation positively affects the relationship between the two.Moreover,using technological innovation as a threshold variable,the impact of population aging on industrial structure upgrading evolves in a“gradient”manner from“impediment”to“insignificant”to“promotion”as the technological innovation levels increase.These findings offer practical guidance for tailoring industrial policies to different stages of technological advancement.
基金2024 General University Characteristic Innovation Research Project of the Education Department of Guangdong Province“Research on the Transformation and Upgrading of Dongguan’s Manufacturing Industry Empowered by Cross-border E-commerce in the Context of New Productivity”(Project No.2024WTSCX347)。
文摘With the rise of the global digital economy and the deep integration of digital technology into traditional manufacturing operations,cross-border e-commerce provides a new commercial model and pathways for transforming and upgrading Dongguan’s traditional manufacturing industry.It also offers perspectives for enhancing the integration of online and offline operations while advancing the industrial Internet process.This study examines the impact of cross-border e-commerce on Dongguan manufacturing,highlighting its role in improving production efficiency,expanding international markets,and driving industrial upgrading through product enhancement,supply chain optimization,and innovative business models.By incorporating practical cases and data analysis from Dongguan enterprises,this study investigates the benefits and challenges of cross-border e-commerce in the transformation of the manufacturing industry,aiming to offer a reference for enterprise digital transformation and global competitive strategies.
基金Under the auspices of National Natural Science Foundation of China(No.72074181)National Social Science Foundation of China(No.20CJY023)Innovation Capability Support Program of Shaanxi(No.2021KJXX-12)。
文摘China has made great achievements in industrial development and is transforming into a powerful manufacturing country.Meanwhile,the industrial land scale is also expanding.However,whether industrial structure upgrading achieves the purpose of restraining industrial land expansion remains unanswered.By calculating the industrial land structure index(ILSI)and industrial land expansion scale(ILES),this study analyzed their temporal and spatial distribution characteristics at both regional and city levels from 2007to 2020 in China.Results show that industrial land expansion presents a different trend in the four regions,the ILES in the eastern region is the largest,and the speed of industrial land expansion has declined since 2013,but it has gradually increased since 2016.The ILSI of the eastern and central regions is higher than that of the western and northeastern regions.Furthermore,a spatial Durbin model(SDM)has been established to estimate the spatial effect of industrial structure upgrading on industrial land expansion from 2007 to2020.Notably,industrial structure upgrading has not slowed industrial land expansion.The eastern and western regions require a greater amount of industrial land while upgrading the industrial structure.The improvement of the infrastructure level and international trade level has promoted industrial land expansion.
基金Postgraduate Education and Teaching Reform Research Project of Liaoning Province in 2022(LNYJG2022131)Postgraduate Education and Teaching Reform Research Project of University of Science and Technology Liaoning in 2022(2022YJSCX07).
文摘Based on the background of the revitalization of Northeast China and industrial transformation,with the goal of serving society with design,leading the future with design,and revitalizing the economy with design,we adhere to the innovative,comprehensive and cultural design talent cultivation concept,fully practice the“student-centered,output-oriented,continuously-improving”educational philosophy taking quality as the first priority,and continuously improve the theoretical system and implementation path for cultivation of postgraduate talents in design science,hoping to optimize the entire process of talent cultivation.Meanwhile,on the basis of“fostering character and civic virtue,cultivating people in a three-all manner,and cultivating people from five aspects simultaneously”,we cultivate high-quality design talents with brand-new models and ideas,through a series of educational reform measures,such as strategic cooperation,resource integration,systematic sorting,quality improvement,standard formulation,strengthening characteristics,platform construction,so that the quality of talents and social development can be perfectly integrated and mutually assist each other to achieve a win-win effect,and the training of design talents can be implemented and serve the society.
基金Supported by 2023 Jiangxi Provincial Innovation and Entrepreneurship Training Project(202310414021).
文摘China's economic growth and economic development has entered a new stage,and the optimization and upgrading of industrial structure is the core driving force for China to achieve high-quality economic development during the"14 th Five-Year Plan"period.Property tax has a conductive effect on the upgrading of industrial structure.Therefore,from the perspective of property tax and industrial structure adjustment and the relationship between them,this study summarizes the relevant research of domestic and foreign scholars.On the basis of the research,the paper puts forward some relevant policy suggestions on improving China's property tax and promoting the optimization and upgrading of China's industrial structure.
基金financially supported by the National Key R&D Program of China(No.2022YFA1505700)the National Natural Science Foundation of China(Nos.22205232,51971157 and 21601187)+2 种基金the Natural Science Foundation of Fujian Province(No.2023J01310231)XinJiang Tianshan Talent Program(No.2022SNGGNT104)support by High-performance Computing Platform of Fujian Science&Technology Innovation Laboratory for Optoelectronic Information of China。
文摘To extend the practical application of biomass upgrading conversion to liquid fuel,it is crucial to develop highly catalytic and reversible nonprecious metal catalysts.Herein,we propose a high-throughput density functional theory(DFT)approach to design a high-efficiency catalyst for the selective electrocatalytic upgrading of vanillin via hydrodeoxygenation(HDO).The optimal pyridinic and pyrrolic nitrogen carbon transition metal(TM)-based monolayers exhibit excellent activity for producing2-methoxy-4-methylphenol(MMP)from vanillin.The pyridinic and pyrrolic nitrogen carbon substrates can provide unique sites to support TM atoms,and TM-pyridinic or pyrrolic N moieties serve as catalytic activity sites for the electrocatalytic upgrading of vanillin.Our DFT calculations suggest that the pyridinic N@TM(TM=Zr,Ru,Rh,Os and Ir)and pyrrolic N@TM(TM=Rh and Os)catalysts possess high activity for MMP synthesized from vanillin,and they have a relatively small limiting potential(U_(L))of the rate-determining step.A new route reaction path was used to explore the activity of metal nitrogendoped carbon catalysts,finding that a single metal atom through strong electron correlation between metal and N_(4)C_(8)sites can improve the activity of the vanillin HDO process.Our results show that pyridinic N@Ir and pyrrolic N@Rh with limiting potential(U_(L))of 0.04 and 0.29 V are the most preferable candidate catalysts for the vanillin HDO process.The high stability and relatively low|U_(L)|for vanillin electrocatalytic upgrading are the best candidate electrocatalysts.This work proposes new ideas for designing and developing novel catalysts for selective HDO of biomass under real conditions.