Development of exquisitely selective and sensitive HClO/ClO^(-)sensor in living system is of the utmost importance.To achieve near-infrared(NIR)-responsive detection of HClO/ClO^(-),a new nanoprobe(csUCNP-Cy820) is co...Development of exquisitely selective and sensitive HClO/ClO^(-)sensor in living system is of the utmost importance.To achieve near-infrared(NIR)-responsive detection of HClO/ClO^(-),a new nanoprobe(csUCNP-Cy820) is composed of the ClO^(-)sensitive Cy820(energy acceptor),and NaLuF4:20%Yb,1%Tm@NaLuF4core@shell upconversion nanoparticles(csUCNP,energy donor) capable of emitting NIR upconversion luminescence(UCL) of Tm^(3+)(800 nm).Through the mechanism of F?rster resonance energy transfer(FRET),the UCL emission can be recovered in the presence of HClO/CIO^(-).The csUCNP-Cy820 nanoprobe is effectively adapted as a precise ClO^(-)detection sensor with a low limit of detection(LoD) of 58 nmol/L in vitro.Moreover,owing to excitation and emission wavelengths both falling within the NIR region,the nanoprobe facilitates high quality imaging in mice models of peritonitis and arthritis,thereby enabling deeper penetration depth for imaging detection in vivo.展开更多
The enhancement of the intensity of red upconversion(UC)emission has significant implications for biological applications.In KZnF_(3):Yb^(3+),Er^(3+)which inherently produces high-purity red emission,the introduction ...The enhancement of the intensity of red upconversion(UC)emission has significant implications for biological applications.In KZnF_(3):Yb^(3+),Er^(3+)which inherently produces high-purity red emission,the introduction of Fe^(3+)markedly improves the UC intensity by a factor of 13.The mechanism behind the enhanced UC red luminescence is deduced to originate from the Yb^(3+)-Fe^(3+)dimer,as determined by first principle calculation and analysis of UC luminescence properties.The thermometry performance,based on splitting peaks of red emission,demonstrated enhanced temperature sensitivity at lower ranges.Exploring the photothermal properties,it was observed that temperature exhibited a linear correlation with pump power under a 980 nm laser,achieving levels up to 48℃.This temperature range is ideal for applications in mild photothermal therapy(MPTT).This work elucidates the material’s potential in advanced biological applications,merging optical thermometry and photothermics,indicating its multifunctional utility.展开更多
4-Nonylphenol(NP)is a kind of estrogen belonging to the endocrine disrupter,widely used in various agricultural and industrial goods.However,extensive use of NP with direct release to environment poses high risks to b...4-Nonylphenol(NP)is a kind of estrogen belonging to the endocrine disrupter,widely used in various agricultural and industrial goods.However,extensive use of NP with direct release to environment poses high risks to both human health and ecosystems.Herein,for the first time,we developed near-infrared(NIR)responsive upconversion luminescence nanosensor for NP detection.The Förster resonance energy transfer based upconversion nanoparticles(UCNPs)-graphene oxide sensor offers highly selective and sensitive detection of NP in linear ranges of 5−200 ng/mL and 200−1000 ng/mL under 980 nm and 808 nm excitation,respectively,with LOD at 4.2 ng/mL.The sensors were successfully tested for NP detection in real liquid milk samples with excellent recovery results.The rare-earth fluoride based upconversion luminescence nanosensor with NIR excitation wavelength,holds promise for sensing food,environmental,and biological samples due to their high sensitivity,specific recognition,low LOD,negligible autofluorescence,along with the deep penetration of NIR excitation sources.展开更多
Very recently,upconversion luminescence(UCL)lifetime,as a powerful optical dimension,has attracted tremendous research interest due to its advantages of high information capacity and high photophysical stability.With ...Very recently,upconversion luminescence(UCL)lifetime,as a powerful optical dimension,has attracted tremendous research interest due to its advantages of high information capacity and high photophysical stability.With the implementation and emergence of endlessly fascinating UCL features,it is particularly meaningful to understand the photophysical mechanisms inside UCL materials to enable rational subdivision-level structure design,which is however currently far from sufficient.In this work,we take an ordinary upconversion nanoparticle as an example to prove that the UCL decay curves and corresponding lifetimes are indeed a collective response of the entire UCL system to excitations,that exhibits correlated,yet quite different properties from individual ions.A specially developed theoretical random walk model combined with an experimental lifetime control for Yb^(3+)/Er^(3+)UCL demonstrates that ene rgy diffusion principally alters the decay rate.Moreover,the different extent of the influence of energy diffusion on the emissions of ^(2)H_(11/2)/^(4)S_(3/2)(green)and ^(4)F_(9/2)(red)leads to an extremely uncommon crossover comparison of decay rates.This work provides new ideas for understanding decay dynamics and practical UCL lifetime manipulation methods.展开更多
Ultraviolet upconversion photoluminescence materials have great potential in various fields,but the improvement of the upconversion efficiency is challenging.Codoping of Li^(+)is considered as an effective strategy an...Ultraviolet upconversion photoluminescence materials have great potential in various fields,but the improvement of the upconversion efficiency is challenging.Codoping of Li^(+)is considered as an effective strategy and widely used to improve the photoluminescence properties of phosphors.In this paper,Li^(+)is introduced into a Y_(7)O_(6)F_(9):Pr^(3+),Gd^(3+)system.The effect of Li^(+)codoping on the phase purity,crystal structure,micro structure,downshifting and upconversion photo luminescence as well as the decay dynamic of the phosphors was studied.It is revealed that the overall photoluminescence efficiency and the energy transfer efficiency from pr^(3+)to Gd^(3+)are greatly promoted.The downshifting and upconversion photoluminescence increase by 2.58 and 10 times as 6 mol%of Li^(+)is codoped.The photo luminescence decay dynamic study shows that the ^(3)P_(0)state decays slower in the Li^(+)-containing phosphor than the Li^(+)-free one.The improvement of the photoluminescence properties is due to the increase of the crystallinity and the reduce of the quenching center.展开更多
Er^(3+)-doped BaLaGaO_(4)green phosphors was synthesized through a high-temperature solid-state reaction technique.The phase structure and morphology test results of the phosphor indicate that the BaLaGaO_(4)material ...Er^(3+)-doped BaLaGaO_(4)green phosphors was synthesized through a high-temperature solid-state reaction technique.The phase structure and morphology test results of the phosphor indicate that the BaLaGaO_(4)material was successfully synthesized and Er^(3+)ions were successfully doped into the main lattice.This doping does change the basic structure of the crystal.BaLaGaO_(4):Er^(3+)phosphor exhibits bright green emission centered at 545 nm when excited by 381 nm ultraviolet light or 980 nm near-infrared light.The optimal doping concentration is found to be x=0.04.To quantify the temperature sensitivity of the phosphor,the fluorescence intensity ratio method was used.Within the temperature range of 298-473 K,the maximum relative sensitivities are 1.35%/K(298 K,381 nm)and 1.45%/K(298 K,980 nm),respectively.The maximum absolute sensitivities are 0.67%/K(473 K,381 nm)and 0.69%/K(473 K,980 nm),respectively.Finally,white light-emitting diodes(WLEDs)with a high colour index of Ra=82and a relatively low correlated colour temperature of CCT=5064 K are obtained by integrating the synthesized BaLaGaO_(4):0.04Er^(3+)green phosphor into warm WLEDs devices.These results suggest that Er^(3+)-activated BaLaGaO_(4)multifunctional phosphors hold considerable promise in the areas of optical temperature sensing and WLEDs phosphor conversion.展开更多
Zinc phthalocyanines(ZnPc)are widely recognized as efficient triplet photosensitizers in photodynamic therapy and photocatalysis,owing to their intense absorption in the visible range and long triplet-state lifetimes....Zinc phthalocyanines(ZnPc)are widely recognized as efficient triplet photosensitizers in photodynamic therapy and photocatalysis,owing to their intense absorption in the visible range and long triplet-state lifetimes.However,their application in triplet-triplet annihilation(TTA)upconversion is lacking to date.In this study,we synthesized a new ZnPc photosensitizer,4I-ZnPc,and composed a TTA upconversion system using rubrene as the energy acceptor.Upon photoexcitation at 663 nm,yellow fluorescence from rubrene was observed in deoxygenated dichloromethane,demonstrating TTA upconversion with an anti-Stokes shift of 0.331 eV and a quantum yield of 1.82%(out of the 50%maximum).Using nanosecond transient absorption spectroscopy,we determined the triplet lifetime of 4I-ZnPc,the triplet-triplet energy transfer efficiency,and the fluorescence quantum yield.These measurements provide critical insights into the photophysical processes governing the TTA upconversion system.Our results highlight the potential advantages and limitations of ZnPc as a triplet photosensitizer for TTA upconversion.展开更多
Lanthanide-sensitized upconverting nanoparticles(UCNPs)are widely studied because of their unusual optical characteristics,such as large antenna-generated anti-Stokes shifts,high photostability,and narrow emission ban...Lanthanide-sensitized upconverting nanoparticles(UCNPs)are widely studied because of their unusual optical characteristics,such as large antenna-generated anti-Stokes shifts,high photostability,and narrow emission bandwidths,which can be harnessed for a variety of applications including bioimaging,sensing,information security and high-level anticounterfeiting.The diverse requirements of these applications typically require precise control over upconversion luminescence(UCL).Recently,the concept of energy migration upconversion has emerged as an effective approach to modulate UCL for various lanthanide ions.Moreover,it provides valuable insights into the fundamental comprehension of energy transfer mechanisms on the nanoscale,thereby contributing to the design of efficient lanthanide-sensitized UCNPs and their practical applications.Here we present a comprehensive overview of the latest developments in energy migration upconversion in lanthanide-sensitized nanoparticles for photon upconversion tuning,encompassing design strategies,mechanistic investigations and applications.Additionally,some future prospects in the field of energy migration upconversion are also discussed.展开更多
The continuous white light(CWL)covering the visible and near-infrared(NIR)regions can be observed in various absorptive media excited by continuous-wave(CW)lasers.It is valuable to stimulate more efforts in unravellin...The continuous white light(CWL)covering the visible and near-infrared(NIR)regions can be observed in various absorptive media excited by continuous-wave(CW)lasers.It is valuable to stimulate more efforts in unravelling the involved photophysical processes and exploring its potential applications in diverse fields.Here,we proved that the enhanced thermal-field can boost the CWL emission.Using rare earth(RE)ions(Pr^(3+),Er^(3+)and Yb^(3+))as the photothermally active centers in Y_(2)SiO_(5)phosphor,we reveal that absorbing more excitation energy and isolating the heat conduction can lead to rapid thermal field accumulation inside the material,thereby significantly reducing the excitation threshold and enhancing white light emission.Our results might have important implications for the understanding of thermally enhanced radiation and may facilitate the CWL commercial application in night vision,bioimaging,and non-destructive detection.展开更多
In this work,rare earth ions(REs)including Yb^(3+)/Er^(3+),Yb^(3+)/Ho^(3+)and Yb^(3+)/Tm^(3+)co-doped manganese oxyfluoride glasses were fabricated using melt quenching method.By fully utilizing the upconversion lumin...In this work,rare earth ions(REs)including Yb^(3+)/Er^(3+),Yb^(3+)/Ho^(3+)and Yb^(3+)/Tm^(3+)co-doped manganese oxyfluoride glasses were fabricated using melt quenching method.By fully utilizing the upconversion luminescence(UCL)of REs and regulating energy transfer between the different energy levels of RE ions and the4T1level of Mn^(2+),the output of UCL was regulated and even pure-red light can be achieved.Moreover,owing to the selective partitioning caused by phase-separation network structure in the oxyfluoride glass,the UCL intensity of glasses annealed for 72 h is significantly enhanced 58 times compared to the rapidly quenched samples.展开更多
Rare earth luminescent materials have attracted extensive attention in the biomedical field as noncontact temperature monitoring devices with microscopic resolution due to their properties in the visible and near-infr...Rare earth luminescent materials have attracted extensive attention in the biomedical field as noncontact temperature monitoring devices with microscopic resolution due to their properties in the visible and near-infrared regions.At the application level,it is required to have a certain temperature monitoring capability in the near-infrared region II window to enhance the tissue penetration depth.Here,two kinds of YOFs:Er^(3+),Yb^(3+)were prepared by co-precipitation and hydrothermal method,and the luminescence was enhanced by ion doping.An Er^(3+)-based ratiometric nanothermometer of ^(4)F_(9∕2)→4 I_(15∕2)(672nm,upconversion luminescence)to ^(4)I _(13∕2)→^(4) I_(15∕2)(1580nm/1566nm,NIR II downshifting luminescence)were designed with the Stark energy level.When doped with 2%Zn^(2+),the relative temperature sensitivity of YOF prepared by co-precipitation method was improved from 0.30%℃^(-1)(30℃)to 0.59%℃^(-1)(30℃),expanding its use as a temperature monitoring device possibility.The temperature sensitivity of YOF prepared by hydrothermal method was 1.01%℃^(-1)(30℃).Finally,the NIR II luminescence of the prepared nanothermometer was used as a control for temperature monitoring of heating sites in mice.The results showed that it can distinguish heating site from control site and no significant cytotoxicity or damage to the tissues was revealed,indicating its broad prospects in the biomedical field and other temperature monitoring scenarios in the future.展开更多
Organic afterglow materials hold significant potential for applications in information storage,anticounterfeiting,and biological imaging.However,studies on afterglow materials capable of ultra-wide range excitation an...Organic afterglow materials hold significant potential for applications in information storage,anticounterfeiting,and biological imaging.However,studies on afterglow materials capable of ultra-wide range excitation and emission simultaneously are limited.To enhance the practicality of strong emission single-component organic afterglow systems,overcoming the constraints of crystalline or other rigid environments is essential.We have developed solid-state dual-persistent thermally activated delayed fluorescence(TADF)and room temperature phosphorescence(RTP)emissions spanning yellow to red under visible light excitation,utilizing a single-molecule terminal group regulation strategy.The RTP lifetime extends from 4.19 ms to 399.70 ms.These afterglow materials exhibit an ultra-wide absorption range from 200 nm to 800 nm,rendering them capable of being excited by both sunlight simulator and nearinfrared radiation.The upconversion phosphorescence lifetime under 808 nm excitation reaches 13.72μs.The double persistent emission of these compounds is temperature-sensitive.Moreover,following grinding or heat treatment,accompanied by extensive afterglow color conversion due to planarization of excited state conformations and additional efficient kRIsc generation.In addition,the amorphous state post melt annealing facilitates the afterglow transition from yellow to green.Crucially,these compounds also maintain stable ultra-long afterglow emission in aqueous and acid-base environments.Overall,we have successfully developed a series of single-component intelligent luminescent materials that demonstrate significant benefits,including dual TADF and RTP emissions,adjustable afterglow lifetimes,a broad range of excitation and emission wavelengths,multi-modal luminescence not restricted to crystalline states,and robust afterglow performance in challenging environments,setting the stage for the practical deployment of afterglow materials in engineering applications,the upconversion afterglow emission also holds promising potential for applications in the field of biological imaging.展开更多
Cadmium ion(Cd^(2+))detection technology plays a prominent role in food safety and human health.Herein,we designed and constructed an 2-aminoethyl dihydrogen phosphate(AEP)@upconversion nanoparticles(UCNPs)fluorescenc...Cadmium ion(Cd^(2+))detection technology plays a prominent role in food safety and human health.Herein,we designed and constructed an 2-aminoethyl dihydrogen phosphate(AEP)@upconversion nanoparticles(UCNPs)fluorescence sensor for quantitative detection of Cd^(2+)in paddy rice based on inner filter effect(IFE)combined with enzyme inhibition mechanism.The AEP modification UCNPs can offer a stable fluorescence donor at 658 nm and be quenched by the oxidized tetramethylbenzidine(oxTMB)catalyzed by horseradish peroxidase(HRP)enzymes.Without addition of Cd^(2+),the fluorescence of AEP@UCNPs fluorescence sensor was weaken due to the IFE between AEP@UCNPs and oxTMB.With addition of Cd^(2+),HRP enzyme activity was inhibited by Cd^(2+),leading to the decreased oxTMB,resulting in the enhance upconversion fluorescence intensity.As a result,the fluorescence intensity signal at 658 nm of the IFE-based AEP@UCNPs fluorescence sensor increased linearly with the increase in Cd^(2+)in a wide range from 0.5μmol/L to 6μmol/L and the limit of detection(LOD)was 24.6 n mol/L.In addition,our proposed IFE-based AEP@UCNPs fluorescence sensor can achieve Cd^(2+)detection in paddy rice in 30 min.展开更多
In this work,the upconversion luminescence(UCL)and temperature-sensing properties of SrGd_(2)O_(4)phosphors doped with Er^(3+),Yb^(3+)were investigated.The UCL performance was studied by adjusting the doping concentra...In this work,the upconversion luminescence(UCL)and temperature-sensing properties of SrGd_(2)O_(4)phosphors doped with Er^(3+),Yb^(3+)were investigated.The UCL performance was studied by adjusting the doping concentrations of Er^(3+),Yb^(3+).It can be found that the intensity of red UCL is effectively improved by doping Yb^(3+)ions.The band structures of SrGd_(2)O_(4).SrGd_(2)O_(4):5 mol%Er^(3+),and SrGd_(2)O_(4):5 mol%Er^(3+).15 mol%Yb^(3+)were calculated using the density functional theory,(DFT)to verify the experimental re-sults.The thermal sensitivity of SrGd_(2)O_(4):5 mol%Er^(3+),15 mol%Yb^(3+)phosphors was studied using the novel fluorescence intensity ratio of non-thermally coupled energy levels(NTCL-FIR)technique based on the^(2)H_(1/2)and^(4)F_(9/2)energy levels.The analytical results reveal that the maximum values of Sr are 1.69%/K(300 K),1.18%/K(300 K)and 1.47%/K(300 K)respectively under 915,980 and 1550 nm excitations.The Sr values of novel NTCL-FIR are compared with that of thermal coupling of energy level(TCL)and other studies in the same field.The results show that the thermometry sensitivity of red-emitting UCL ma-terials can be enhanced by using the novel NTCL-FIR technique.In addition,the intense red UCL of SrGd_(2)O_(4):Er^(3+),Yb^(3+)phosphors have the advantage of deeply penetrating biological tissues.Therefore,the combination of novel NTCL-FIR and red-emitting SrGd_(2)O_(4):Er^(3+),Yb^(3+)phosphors could be conducive to temperaturemonitoring invivo.展开更多
In order to develop the high photocatalytic activity of TiO2 under visible light as that under ultraviolet light and make it easy to be separated from treated liquor, a visible light response and spherical activated c...In order to develop the high photocatalytic activity of TiO2 under visible light as that under ultraviolet light and make it easy to be separated from treated liquor, a visible light response and spherical activated carbon (SAC) supported photocatalyst doped with upconversion luminescence agent Er3+:YAlO3 was prepared by immobilizing Er3+:YAlO3/TiO2, which was obtained by combination of Er3+:YAlO3 and TiO2 using sol-gel method, on the surface of SAC. The crystal phase composition, surface structure and element distribution, and light absorption of the new photocatalysts were examined by X-ray diffraction (XRD), energy dispersive X-ray spectra (EDS) analysis, scanning electron microscopy (SEM) and fluorescence spectra analysis (FSA). The photocatalytic oxidation activity of the photocatalysts was also evaluated by the photodegradation of methyl orange (MO) in aqueous solution under visible light irradiation from a LED lamp (λ400 nm). The results showed that Er3+:YAlO3 could perform as the upconversion luminescence agent which converts the visible light up to ultraviolet light. The Er3+:YAlO3/TiO2 calcinated at 700 °C revealed the highest photocatalytic activity. The apparent reaction rate constant could reach 0.0197 min-1 under visible light irradiation.展开更多
Lutetium oxide nanocrystals codoped with Tm3+ and Yb3+ were synthesized by the reverse-like co-precipitation method, using ammonium hydrogen carbonate as precipitant. Effects of the Tm3+, Yb3+ molar fractions and ...Lutetium oxide nanocrystals codoped with Tm3+ and Yb3+ were synthesized by the reverse-like co-precipitation method, using ammonium hydrogen carbonate as precipitant. Effects of the Tm3+, Yb3+ molar fractions and calcination temperature on the structural and upconversion luminescent properties of the Lu2O3 nanocrystals were investigated. The XRD results show that all the prepared nanocrystals can be readily indexed to pure cubic phase of Lu2O3 and indicate good crystallinity. The experimental results show that concentration quenching occurs when the mole fraction of Tm3+ is above 0.2%. The optimal Tm3+ and Yb3+ doped molar fractions are 0.2% and 2%, respectively. The strong blue (490 nm) and the weak red (653 nm) emissions from the prepared nanocrystals were observed under 980 nm laser excitation, and attributed to the 1G4→3H6 and IG4→3F4 transitions of Tm3+, respectively. Power-dependent study reveals that the 1G4 levels of Tm3+ can be populated by three-step energy transfer process. The upconversion emission intensities of 490 nm and 653 nm increase gradually with the increase of calcination temperature. The enhancement of the upconversion luminescence is suggested to be the consequence of reducing number of OH- groups and the enlarged nanoerystal size.展开更多
A new method was reported for surface modification of an up-conversion luminescence material with hydrosulfide group. The factors that may influence the surface modification,such as reaction time,amount of catalyzer a...A new method was reported for surface modification of an up-conversion luminescence material with hydrosulfide group. The factors that may influence the surface modification,such as reaction time,amount of catalyzer and modifier,and reaction solvent,were investigated. The optimal conditions were that the reaction time,the quantity of the basic catalyzer,the quantity of modifier and the volume of reaction solvent were 40 min,1.0,1.0,and 40 mL,respectively. The results indicated that hydrosulfide group content modified on the surface of up-conversion luminescence material reached to 0.1430 mmol/g,and this modified up-conversion luminescence material could be widely used in the study of structure of protein and the property of microenvironment.展开更多
Erbium-doped BaTiO3 films on LaNiO3/Si substrates were fabricated by sol-gel method. The crystalline structure, morphologies and upconversion (UC) luminescence properties of films were respectively investigated by X...Erbium-doped BaTiO3 films on LaNiO3/Si substrates were fabricated by sol-gel method. The crystalline structure, morphologies and upconversion (UC) luminescence properties of films were respectively investigated by X-ray diffraction (XRD), atomic force microcopy (AFM) and photoluminescence (PL). The results indicate that both of the microstructure and luminescence are found to be dependent on Er^3+ substituting sites. The samples with A-site substitution have smaller lattice constants, larger grains and smoother surface than those with B-site substitution. The photoluminescence spectra show that both of the samples have two stronger green emission bands centered at 528 and 548 nm and a weak red emission band centered at 673 nm, which correspond to the relaxation of Er^3+ from ^2H11/2, ^4S3/2, and ^4F9/2 levels to the ground level ^4I15/2, respectively. Compared with B-site doped films, A-site doped films have a stronger integrated intensity of green emissions and a weaker relative intensity of red emissions. The differences could be explained by the crystalline quality and cross relaxation (CR) process.展开更多
Present-day advanced technologies heavily rely on the exciting magnetic and spectroscopic properties of lanthanide ions. In particular, their ability to generate well-characterized and intense near-infrared (NIR) lumi...Present-day advanced technologies heavily rely on the exciting magnetic and spectroscopic properties of lanthanide ions. In particular, their ability to generate well-characterized and intense near-infrared (NIR) luminescence is exploited in any modern fiber-optic telecommunication network. In this feature article, we first summarize the whereabouts underlying the design of highly luminescent NIR molecular edifices and materials. We then focus on describing the main trends in three applications related to this spectral range: telecommunications, biosciences, and solar energy conversion. In telecommunications, efforts concentrate presently on getting easily processable polymer-based waveguide amplifiers. Upconversion nanophosphors emitting in the visible after NIR excitation are now ubiquitous in many bioanalyses while their application to bio-imaging is still in its early stages; however, highly sensitive NIR-NIR systems start to be at hand for both in vitro and in vivo imaging, as well as dual probes combining magnetic resonance and optical imaging. Finally, both silicon-based and dye-sensitized solar cells benefit from the downconversion and upconversion capabilities of lanthanide ions to harvest UV and NIR solar light and to boost the overall quantum efficiency of these next-generation devices.展开更多
Rare earth doped upconversion nanoparticles can be considered as the spice of research in the field of luminescence nanomaterials due to their unique optical properties such as near-infrared excitation.Enormous works ...Rare earth doped upconversion nanoparticles can be considered as the spice of research in the field of luminescence nanomaterials due to their unique optical properties such as near-infrared excitation.Enormous works have been reported about biomedical applications of 980 nm excited and Yb^3+-sensitized upconversion nanoparticles.However,980 nm excitation wavelength overlaps with the absorption band of water molecules in the biological environment,leading to overheating effect that can induce thermal damages of normal cells and tissues.Recently,Nd^3+-sensitized upconversion nanoparticles which can be excited with 808 nm has been widely investigated as alternative nanoparticles that can surmount this issue of overheating effect.Even though Nd^3+-sensitized upconversion nanoparticles can reduce the overheating effect by 20 fold as compared to Yb^3+-sensitized counterpart,there are several factors that reduce the upconversion luminescence intensity.In this review article,photon energy harvesting and transferring mechanisms in Nd^3+,Yb^3+and emitter ions co-doped upconversion nanoparticles under 808 nm excitation are briefly discussed.Factors that affect upconversion luminescence intensity and quantum yield of Nd^3+-sensitized upconversion nanoparticles are also addressed.Besides,some of the important strategies that have been recently utilized to boost upconversion luminescence intensity of Nd^3+sensitized upco nversion nanoparticles are tho roughly summarized.Lastly,the future challenges in the area and our perspectives are in sight.展开更多
基金Project supported by the National Key R&D Program of China (2022YFF0710000)。
文摘Development of exquisitely selective and sensitive HClO/ClO^(-)sensor in living system is of the utmost importance.To achieve near-infrared(NIR)-responsive detection of HClO/ClO^(-),a new nanoprobe(csUCNP-Cy820) is composed of the ClO^(-)sensitive Cy820(energy acceptor),and NaLuF4:20%Yb,1%Tm@NaLuF4core@shell upconversion nanoparticles(csUCNP,energy donor) capable of emitting NIR upconversion luminescence(UCL) of Tm^(3+)(800 nm).Through the mechanism of F?rster resonance energy transfer(FRET),the UCL emission can be recovered in the presence of HClO/CIO^(-).The csUCNP-Cy820 nanoprobe is effectively adapted as a precise ClO^(-)detection sensor with a low limit of detection(LoD) of 58 nmol/L in vitro.Moreover,owing to excitation and emission wavelengths both falling within the NIR region,the nanoprobe facilitates high quality imaging in mice models of peritonitis and arthritis,thereby enabling deeper penetration depth for imaging detection in vivo.
基金supported by the Priority Academic Program Development of Jiangsu Higher Education Institutions(PAPD),"Qinglan Project"Young and Middle-aged Academic Leaders Program of Jiangsu Province,and the National Natural Science Foundation of China(General Program).
文摘The enhancement of the intensity of red upconversion(UC)emission has significant implications for biological applications.In KZnF_(3):Yb^(3+),Er^(3+)which inherently produces high-purity red emission,the introduction of Fe^(3+)markedly improves the UC intensity by a factor of 13.The mechanism behind the enhanced UC red luminescence is deduced to originate from the Yb^(3+)-Fe^(3+)dimer,as determined by first principle calculation and analysis of UC luminescence properties.The thermometry performance,based on splitting peaks of red emission,demonstrated enhanced temperature sensitivity at lower ranges.Exploring the photothermal properties,it was observed that temperature exhibited a linear correlation with pump power under a 980 nm laser,achieving levels up to 48℃.This temperature range is ideal for applications in mild photothermal therapy(MPTT).This work elucidates the material’s potential in advanced biological applications,merging optical thermometry and photothermics,indicating its multifunctional utility.
文摘4-Nonylphenol(NP)is a kind of estrogen belonging to the endocrine disrupter,widely used in various agricultural and industrial goods.However,extensive use of NP with direct release to environment poses high risks to both human health and ecosystems.Herein,for the first time,we developed near-infrared(NIR)responsive upconversion luminescence nanosensor for NP detection.The Förster resonance energy transfer based upconversion nanoparticles(UCNPs)-graphene oxide sensor offers highly selective and sensitive detection of NP in linear ranges of 5−200 ng/mL and 200−1000 ng/mL under 980 nm and 808 nm excitation,respectively,with LOD at 4.2 ng/mL.The sensors were successfully tested for NP detection in real liquid milk samples with excellent recovery results.The rare-earth fluoride based upconversion luminescence nanosensor with NIR excitation wavelength,holds promise for sensing food,environmental,and biological samples due to their high sensitivity,specific recognition,low LOD,negligible autofluorescence,along with the deep penetration of NIR excitation sources.
基金Project supported by the National Natural Science Foundation of China(62105235,62205035)the Scientific Research Project of Tianjin Education Commission(2022KJ060)+1 种基金Qinglan Project of Jiangsu Province of ChinaNatural Science Foundation of the Jiangsu Higher Education Institutions of China(22KJD350001)。
文摘Very recently,upconversion luminescence(UCL)lifetime,as a powerful optical dimension,has attracted tremendous research interest due to its advantages of high information capacity and high photophysical stability.With the implementation and emergence of endlessly fascinating UCL features,it is particularly meaningful to understand the photophysical mechanisms inside UCL materials to enable rational subdivision-level structure design,which is however currently far from sufficient.In this work,we take an ordinary upconversion nanoparticle as an example to prove that the UCL decay curves and corresponding lifetimes are indeed a collective response of the entire UCL system to excitations,that exhibits correlated,yet quite different properties from individual ions.A specially developed theoretical random walk model combined with an experimental lifetime control for Yb^(3+)/Er^(3+)UCL demonstrates that ene rgy diffusion principally alters the decay rate.Moreover,the different extent of the influence of energy diffusion on the emissions of ^(2)H_(11/2)/^(4)S_(3/2)(green)and ^(4)F_(9/2)(red)leads to an extremely uncommon crossover comparison of decay rates.This work provides new ideas for understanding decay dynamics and practical UCL lifetime manipulation methods.
基金supported by the National Natural Science Foundation of China(51701091,12004148,12104199,12204216)the Natural Science Foundation of Shandong Province(ZR2021QA057)+1 种基金the Shandong Province Science and Technology Small and Medium Sized Enterprise Innovation Ability Enhancement Project(2023TSGC0352)the Innovation Team of Higher Educational Science and Technology Program of Shandong Province(2019KJA025)。
文摘Ultraviolet upconversion photoluminescence materials have great potential in various fields,but the improvement of the upconversion efficiency is challenging.Codoping of Li^(+)is considered as an effective strategy and widely used to improve the photoluminescence properties of phosphors.In this paper,Li^(+)is introduced into a Y_(7)O_(6)F_(9):Pr^(3+),Gd^(3+)system.The effect of Li^(+)codoping on the phase purity,crystal structure,micro structure,downshifting and upconversion photo luminescence as well as the decay dynamic of the phosphors was studied.It is revealed that the overall photoluminescence efficiency and the energy transfer efficiency from pr^(3+)to Gd^(3+)are greatly promoted.The downshifting and upconversion photoluminescence increase by 2.58 and 10 times as 6 mol%of Li^(+)is codoped.The photo luminescence decay dynamic study shows that the ^(3)P_(0)state decays slower in the Li^(+)-containing phosphor than the Li^(+)-free one.The improvement of the photoluminescence properties is due to the increase of the crystallinity and the reduce of the quenching center.
基金supported by the National Natural Science Foundation of China(52403403)Guizhou Provincial Basic Research Program(Natural Science)(Qian ke he ji chu-ZK2024 YiBan 095)。
文摘Er^(3+)-doped BaLaGaO_(4)green phosphors was synthesized through a high-temperature solid-state reaction technique.The phase structure and morphology test results of the phosphor indicate that the BaLaGaO_(4)material was successfully synthesized and Er^(3+)ions were successfully doped into the main lattice.This doping does change the basic structure of the crystal.BaLaGaO_(4):Er^(3+)phosphor exhibits bright green emission centered at 545 nm when excited by 381 nm ultraviolet light or 980 nm near-infrared light.The optimal doping concentration is found to be x=0.04.To quantify the temperature sensitivity of the phosphor,the fluorescence intensity ratio method was used.Within the temperature range of 298-473 K,the maximum relative sensitivities are 1.35%/K(298 K,381 nm)and 1.45%/K(298 K,980 nm),respectively.The maximum absolute sensitivities are 0.67%/K(473 K,381 nm)and 0.69%/K(473 K,980 nm),respectively.Finally,white light-emitting diodes(WLEDs)with a high colour index of Ra=82and a relatively low correlated colour temperature of CCT=5064 K are obtained by integrating the synthesized BaLaGaO_(4):0.04Er^(3+)green phosphor into warm WLEDs devices.These results suggest that Er^(3+)-activated BaLaGaO_(4)multifunctional phosphors hold considerable promise in the areas of optical temperature sensing and WLEDs phosphor conversion.
基金supported by the National Natural Science Foundation of China(Nos.22473104 and 22403086)support of the China Postdoctoral Science Foundation(No.2023M733378).
文摘Zinc phthalocyanines(ZnPc)are widely recognized as efficient triplet photosensitizers in photodynamic therapy and photocatalysis,owing to their intense absorption in the visible range and long triplet-state lifetimes.However,their application in triplet-triplet annihilation(TTA)upconversion is lacking to date.In this study,we synthesized a new ZnPc photosensitizer,4I-ZnPc,and composed a TTA upconversion system using rubrene as the energy acceptor.Upon photoexcitation at 663 nm,yellow fluorescence from rubrene was observed in deoxygenated dichloromethane,demonstrating TTA upconversion with an anti-Stokes shift of 0.331 eV and a quantum yield of 1.82%(out of the 50%maximum).Using nanosecond transient absorption spectroscopy,we determined the triplet lifetime of 4I-ZnPc,the triplet-triplet energy transfer efficiency,and the fluorescence quantum yield.These measurements provide critical insights into the photophysical processes governing the TTA upconversion system.Our results highlight the potential advantages and limitations of ZnPc as a triplet photosensitizer for TTA upconversion.
基金supported by Senior Talent Fund of Jiangsu University(No.5501310021)China Postdoctoral Science Foundation(No.2023M741419)+1 种基金the Young Elite Scientist Sponsorship Program by ZJAST(No.G301310002)Research Fund for International Scientists(No.22350710187).
文摘Lanthanide-sensitized upconverting nanoparticles(UCNPs)are widely studied because of their unusual optical characteristics,such as large antenna-generated anti-Stokes shifts,high photostability,and narrow emission bandwidths,which can be harnessed for a variety of applications including bioimaging,sensing,information security and high-level anticounterfeiting.The diverse requirements of these applications typically require precise control over upconversion luminescence(UCL).Recently,the concept of energy migration upconversion has emerged as an effective approach to modulate UCL for various lanthanide ions.Moreover,it provides valuable insights into the fundamental comprehension of energy transfer mechanisms on the nanoscale,thereby contributing to the design of efficient lanthanide-sensitized UCNPs and their practical applications.Here we present a comprehensive overview of the latest developments in energy migration upconversion in lanthanide-sensitized nanoparticles for photon upconversion tuning,encompassing design strategies,mechanistic investigations and applications.Additionally,some future prospects in the field of energy migration upconversion are also discussed.
基金supported by the National Natural Science Foundation of China(12104336,U20A20211,62075152,12004274)Fundamental Research Program of Shanxi Province(20210302124162)。
文摘The continuous white light(CWL)covering the visible and near-infrared(NIR)regions can be observed in various absorptive media excited by continuous-wave(CW)lasers.It is valuable to stimulate more efforts in unravelling the involved photophysical processes and exploring its potential applications in diverse fields.Here,we proved that the enhanced thermal-field can boost the CWL emission.Using rare earth(RE)ions(Pr^(3+),Er^(3+)and Yb^(3+))as the photothermally active centers in Y_(2)SiO_(5)phosphor,we reveal that absorbing more excitation energy and isolating the heat conduction can lead to rapid thermal field accumulation inside the material,thereby significantly reducing the excitation threshold and enhancing white light emission.Our results might have important implications for the understanding of thermally enhanced radiation and may facilitate the CWL commercial application in night vision,bioimaging,and non-destructive detection.
基金Project supported by National Natural Science Foundation of China(62305244,62374112,62105078)Shandong Province Natural Science Foundation(ZR2021QE060,ZR2021QF009)+1 种基金Young Elite Scientists Sponsorship Program by China Association for Science and Technology(2022QNRC001)Youth Science and Technology Innovation Team of Shandong Province Institution of Higher Learning(2022KJ258)。
文摘In this work,rare earth ions(REs)including Yb^(3+)/Er^(3+),Yb^(3+)/Ho^(3+)and Yb^(3+)/Tm^(3+)co-doped manganese oxyfluoride glasses were fabricated using melt quenching method.By fully utilizing the upconversion luminescence(UCL)of REs and regulating energy transfer between the different energy levels of RE ions and the4T1level of Mn^(2+),the output of UCL was regulated and even pure-red light can be achieved.Moreover,owing to the selective partitioning caused by phase-separation network structure in the oxyfluoride glass,the UCL intensity of glasses annealed for 72 h is significantly enhanced 58 times compared to the rapidly quenched samples.
基金supported by the Key Research and Development Program of Shaanxi(Program No.2023-YBSF-479)the National Natural Science Foundation of China(NSFC 22075249)the Fundamental Research Funds for the Central Universities.
文摘Rare earth luminescent materials have attracted extensive attention in the biomedical field as noncontact temperature monitoring devices with microscopic resolution due to their properties in the visible and near-infrared regions.At the application level,it is required to have a certain temperature monitoring capability in the near-infrared region II window to enhance the tissue penetration depth.Here,two kinds of YOFs:Er^(3+),Yb^(3+)were prepared by co-precipitation and hydrothermal method,and the luminescence was enhanced by ion doping.An Er^(3+)-based ratiometric nanothermometer of ^(4)F_(9∕2)→4 I_(15∕2)(672nm,upconversion luminescence)to ^(4)I _(13∕2)→^(4) I_(15∕2)(1580nm/1566nm,NIR II downshifting luminescence)were designed with the Stark energy level.When doped with 2%Zn^(2+),the relative temperature sensitivity of YOF prepared by co-precipitation method was improved from 0.30%℃^(-1)(30℃)to 0.59%℃^(-1)(30℃),expanding its use as a temperature monitoring device possibility.The temperature sensitivity of YOF prepared by hydrothermal method was 1.01%℃^(-1)(30℃).Finally,the NIR II luminescence of the prepared nanothermometer was used as a control for temperature monitoring of heating sites in mice.The results showed that it can distinguish heating site from control site and no significant cytotoxicity or damage to the tissues was revealed,indicating its broad prospects in the biomedical field and other temperature monitoring scenarios in the future.
基金financially supported by the National Natural Science Foundation of China(No.21871122)。
文摘Organic afterglow materials hold significant potential for applications in information storage,anticounterfeiting,and biological imaging.However,studies on afterglow materials capable of ultra-wide range excitation and emission simultaneously are limited.To enhance the practicality of strong emission single-component organic afterglow systems,overcoming the constraints of crystalline or other rigid environments is essential.We have developed solid-state dual-persistent thermally activated delayed fluorescence(TADF)and room temperature phosphorescence(RTP)emissions spanning yellow to red under visible light excitation,utilizing a single-molecule terminal group regulation strategy.The RTP lifetime extends from 4.19 ms to 399.70 ms.These afterglow materials exhibit an ultra-wide absorption range from 200 nm to 800 nm,rendering them capable of being excited by both sunlight simulator and nearinfrared radiation.The upconversion phosphorescence lifetime under 808 nm excitation reaches 13.72μs.The double persistent emission of these compounds is temperature-sensitive.Moreover,following grinding or heat treatment,accompanied by extensive afterglow color conversion due to planarization of excited state conformations and additional efficient kRIsc generation.In addition,the amorphous state post melt annealing facilitates the afterglow transition from yellow to green.Crucially,these compounds also maintain stable ultra-long afterglow emission in aqueous and acid-base environments.Overall,we have successfully developed a series of single-component intelligent luminescent materials that demonstrate significant benefits,including dual TADF and RTP emissions,adjustable afterglow lifetimes,a broad range of excitation and emission wavelengths,multi-modal luminescence not restricted to crystalline states,and robust afterglow performance in challenging environments,setting the stage for the practical deployment of afterglow materials in engineering applications,the upconversion afterglow emission also holds promising potential for applications in the field of biological imaging.
基金financially supported by the National Natural Science Foundation of China(32202132,32172229)Young Elite Scientists Sponsorship Program by CAST(2022QNRC001)the Priority Academic Program Development of Jiangsu Higher Educations(PAPD)。
文摘Cadmium ion(Cd^(2+))detection technology plays a prominent role in food safety and human health.Herein,we designed and constructed an 2-aminoethyl dihydrogen phosphate(AEP)@upconversion nanoparticles(UCNPs)fluorescence sensor for quantitative detection of Cd^(2+)in paddy rice based on inner filter effect(IFE)combined with enzyme inhibition mechanism.The AEP modification UCNPs can offer a stable fluorescence donor at 658 nm and be quenched by the oxidized tetramethylbenzidine(oxTMB)catalyzed by horseradish peroxidase(HRP)enzymes.Without addition of Cd^(2+),the fluorescence of AEP@UCNPs fluorescence sensor was weaken due to the IFE between AEP@UCNPs and oxTMB.With addition of Cd^(2+),HRP enzyme activity was inhibited by Cd^(2+),leading to the decreased oxTMB,resulting in the enhance upconversion fluorescence intensity.As a result,the fluorescence intensity signal at 658 nm of the IFE-based AEP@UCNPs fluorescence sensor increased linearly with the increase in Cd^(2+)in a wide range from 0.5μmol/L to 6μmol/L and the limit of detection(LOD)was 24.6 n mol/L.In addition,our proposed IFE-based AEP@UCNPs fluorescence sensor can achieve Cd^(2+)detection in paddy rice in 30 min.
基金the National Natural Science Foundation of China(62174015)the Developing Project of Science and Technology of Jilin Province(202002040JC).
文摘In this work,the upconversion luminescence(UCL)and temperature-sensing properties of SrGd_(2)O_(4)phosphors doped with Er^(3+),Yb^(3+)were investigated.The UCL performance was studied by adjusting the doping concentrations of Er^(3+),Yb^(3+).It can be found that the intensity of red UCL is effectively improved by doping Yb^(3+)ions.The band structures of SrGd_(2)O_(4).SrGd_(2)O_(4):5 mol%Er^(3+),and SrGd_(2)O_(4):5 mol%Er^(3+).15 mol%Yb^(3+)were calculated using the density functional theory,(DFT)to verify the experimental re-sults.The thermal sensitivity of SrGd_(2)O_(4):5 mol%Er^(3+),15 mol%Yb^(3+)phosphors was studied using the novel fluorescence intensity ratio of non-thermally coupled energy levels(NTCL-FIR)technique based on the^(2)H_(1/2)and^(4)F_(9/2)energy levels.The analytical results reveal that the maximum values of Sr are 1.69%/K(300 K),1.18%/K(300 K)and 1.47%/K(300 K)respectively under 915,980 and 1550 nm excitations.The Sr values of novel NTCL-FIR are compared with that of thermal coupling of energy level(TCL)and other studies in the same field.The results show that the thermometry sensitivity of red-emitting UCL ma-terials can be enhanced by using the novel NTCL-FIR technique.In addition,the intense red UCL of SrGd_(2)O_(4):Er^(3+),Yb^(3+)phosphors have the advantage of deeply penetrating biological tissues.Therefore,the combination of novel NTCL-FIR and red-emitting SrGd_(2)O_(4):Er^(3+),Yb^(3+)phosphors could be conducive to temperaturemonitoring invivo.
基金Projects (50908096, 50908097) supported by the National Natural Science Foundation of ChinaProject (20100471251) supported by China Postdoctoral Science Foundation
文摘In order to develop the high photocatalytic activity of TiO2 under visible light as that under ultraviolet light and make it easy to be separated from treated liquor, a visible light response and spherical activated carbon (SAC) supported photocatalyst doped with upconversion luminescence agent Er3+:YAlO3 was prepared by immobilizing Er3+:YAlO3/TiO2, which was obtained by combination of Er3+:YAlO3 and TiO2 using sol-gel method, on the surface of SAC. The crystal phase composition, surface structure and element distribution, and light absorption of the new photocatalysts were examined by X-ray diffraction (XRD), energy dispersive X-ray spectra (EDS) analysis, scanning electron microscopy (SEM) and fluorescence spectra analysis (FSA). The photocatalytic oxidation activity of the photocatalysts was also evaluated by the photodegradation of methyl orange (MO) in aqueous solution under visible light irradiation from a LED lamp (λ400 nm). The results showed that Er3+:YAlO3 could perform as the upconversion luminescence agent which converts the visible light up to ultraviolet light. The Er3+:YAlO3/TiO2 calcinated at 700 °C revealed the highest photocatalytic activity. The apparent reaction rate constant could reach 0.0197 min-1 under visible light irradiation.
基金Foundation item: Projects (10704090,10774140,11047147)supported by the National Natural Science Foundation of ChinaProjects (KJ090514,KJTD201016)supported by the Natural Science Foundation of Chongqing Municipal Education Commission,China
文摘Lutetium oxide nanocrystals codoped with Tm3+ and Yb3+ were synthesized by the reverse-like co-precipitation method, using ammonium hydrogen carbonate as precipitant. Effects of the Tm3+, Yb3+ molar fractions and calcination temperature on the structural and upconversion luminescent properties of the Lu2O3 nanocrystals were investigated. The XRD results show that all the prepared nanocrystals can be readily indexed to pure cubic phase of Lu2O3 and indicate good crystallinity. The experimental results show that concentration quenching occurs when the mole fraction of Tm3+ is above 0.2%. The optimal Tm3+ and Yb3+ doped molar fractions are 0.2% and 2%, respectively. The strong blue (490 nm) and the weak red (653 nm) emissions from the prepared nanocrystals were observed under 980 nm laser excitation, and attributed to the 1G4→3H6 and IG4→3F4 transitions of Tm3+, respectively. Power-dependent study reveals that the 1G4 levels of Tm3+ can be populated by three-step energy transfer process. The upconversion emission intensities of 490 nm and 653 nm increase gradually with the increase of calcination temperature. The enhancement of the upconversion luminescence is suggested to be the consequence of reducing number of OH- groups and the enlarged nanoerystal size.
基金the National Natural Science Foundations of China (No50372006 and No20273007)
文摘A new method was reported for surface modification of an up-conversion luminescence material with hydrosulfide group. The factors that may influence the surface modification,such as reaction time,amount of catalyzer and modifier,and reaction solvent,were investigated. The optimal conditions were that the reaction time,the quantity of the basic catalyzer,the quantity of modifier and the volume of reaction solvent were 40 min,1.0,1.0,and 40 mL,respectively. The results indicated that hydrosulfide group content modified on the surface of up-conversion luminescence material reached to 0.1430 mmol/g,and this modified up-conversion luminescence material could be widely used in the study of structure of protein and the property of microenvironment.
基金Project (2009AA035002) supported by the High-tech Research and Development Program of China
文摘Erbium-doped BaTiO3 films on LaNiO3/Si substrates were fabricated by sol-gel method. The crystalline structure, morphologies and upconversion (UC) luminescence properties of films were respectively investigated by X-ray diffraction (XRD), atomic force microcopy (AFM) and photoluminescence (PL). The results indicate that both of the microstructure and luminescence are found to be dependent on Er^3+ substituting sites. The samples with A-site substitution have smaller lattice constants, larger grains and smoother surface than those with B-site substitution. The photoluminescence spectra show that both of the samples have two stronger green emission bands centered at 528 and 548 nm and a weak red emission band centered at 673 nm, which correspond to the relaxation of Er^3+ from ^2H11/2, ^4S3/2, and ^4F9/2 levels to the ground level ^4I15/2, respectively. Compared with B-site doped films, A-site doped films have a stronger integrated intensity of green emissions and a weaker relative intensity of red emissions. The differences could be explained by the crystalline quality and cross relaxation (CR) process.
基金Project supported through grants from the Swiss National Science Foundationthe WCU program from the National Science Foundation of Korea for grant R31-10035
文摘Present-day advanced technologies heavily rely on the exciting magnetic and spectroscopic properties of lanthanide ions. In particular, their ability to generate well-characterized and intense near-infrared (NIR) luminescence is exploited in any modern fiber-optic telecommunication network. In this feature article, we first summarize the whereabouts underlying the design of highly luminescent NIR molecular edifices and materials. We then focus on describing the main trends in three applications related to this spectral range: telecommunications, biosciences, and solar energy conversion. In telecommunications, efforts concentrate presently on getting easily processable polymer-based waveguide amplifiers. Upconversion nanophosphors emitting in the visible after NIR excitation are now ubiquitous in many bioanalyses while their application to bio-imaging is still in its early stages; however, highly sensitive NIR-NIR systems start to be at hand for both in vitro and in vivo imaging, as well as dual probes combining magnetic resonance and optical imaging. Finally, both silicon-based and dye-sensitized solar cells benefit from the downconversion and upconversion capabilities of lanthanide ions to harvest UV and NIR solar light and to boost the overall quantum efficiency of these next-generation devices.
基金Projects supported by the National Natural Science Foundation of China(21571125,51872183,51672171)National Key R&D Program of China(2016YFE0114800)
文摘Rare earth doped upconversion nanoparticles can be considered as the spice of research in the field of luminescence nanomaterials due to their unique optical properties such as near-infrared excitation.Enormous works have been reported about biomedical applications of 980 nm excited and Yb^3+-sensitized upconversion nanoparticles.However,980 nm excitation wavelength overlaps with the absorption band of water molecules in the biological environment,leading to overheating effect that can induce thermal damages of normal cells and tissues.Recently,Nd^3+-sensitized upconversion nanoparticles which can be excited with 808 nm has been widely investigated as alternative nanoparticles that can surmount this issue of overheating effect.Even though Nd^3+-sensitized upconversion nanoparticles can reduce the overheating effect by 20 fold as compared to Yb^3+-sensitized counterpart,there are several factors that reduce the upconversion luminescence intensity.In this review article,photon energy harvesting and transferring mechanisms in Nd^3+,Yb^3+and emitter ions co-doped upconversion nanoparticles under 808 nm excitation are briefly discussed.Factors that affect upconversion luminescence intensity and quantum yield of Nd^3+-sensitized upconversion nanoparticles are also addressed.Besides,some of the important strategies that have been recently utilized to boost upconversion luminescence intensity of Nd^3+sensitized upco nversion nanoparticles are tho roughly summarized.Lastly,the future challenges in the area and our perspectives are in sight.