目的 随着人工智能的发展,深度学习技术在医学图像分割中得到广泛应用。但现有方法往往采用自上而下或自下而上的方式进行特征融合,易忽略或丢失中间层特征信息。此外,现有方法对病灶区域分割边界不够精细。针对上述问题,本文提出一种...目的 随着人工智能的发展,深度学习技术在医学图像分割中得到广泛应用。但现有方法往往采用自上而下或自下而上的方式进行特征融合,易忽略或丢失中间层特征信息。此外,现有方法对病灶区域分割边界不够精细。针对上述问题,本文提出一种聚焦全局与中间层特征的细节增强医学图像分割网络(detail-enhanced medical image segmentation network focusing on global and intermediate features,DEMS-GIF)。方法 首先通过进一步关注中间层信息,并利用Transformer提取不同区域之间的长距离依赖关系的能力,设计了一种基于Transformer的桥接特征融合模块(Transformer-based bridge feature fusion module,TBBFF),以提升模型的特征提取能力。其次,通过引入反向注意力机制,并结合腐蚀和膨胀操作,提出一种反向注意下的扩缩区域增强上采样策略(expanded and scaled region enhanced upsampling strategy under reverse attention,ESRU),使得模型能够更好地捕捉边界和细节信息。DEMS-GIF模型通过结合TBBFF模块和ESRU策略,进一步提高了分割的准确性。结果 在CVC-ClinicDB、DDTI(digital database thyroid image)和Kvasir-SEG 3个数据集上进行对比实验和模块消融实验,评估提出的DEMS-GIF模型,并在CVC-ClinicDB数据集上进行参数消融实验,以了解DEMS-GIF中每个模块和结构内部的有效性。实验结果表明,DEMS-GIF模型的mIoU值分别达到94.74%、84.56%和88.46%,Dice值分别达到94.82%、82.95%和87.44%。与原UNet型通道变换网络相比,mIoU值分别提升3.73%、3.4%和5.24%,Dice值分别提升4.84%、5.45%和6.82%。结论 本文提出的DEMS-GIF网络模型较其他先进的分割方法的分割效果更优,表明了其在医学图像分割中的优越性。展开更多
文摘目的 随着人工智能的发展,深度学习技术在医学图像分割中得到广泛应用。但现有方法往往采用自上而下或自下而上的方式进行特征融合,易忽略或丢失中间层特征信息。此外,现有方法对病灶区域分割边界不够精细。针对上述问题,本文提出一种聚焦全局与中间层特征的细节增强医学图像分割网络(detail-enhanced medical image segmentation network focusing on global and intermediate features,DEMS-GIF)。方法 首先通过进一步关注中间层信息,并利用Transformer提取不同区域之间的长距离依赖关系的能力,设计了一种基于Transformer的桥接特征融合模块(Transformer-based bridge feature fusion module,TBBFF),以提升模型的特征提取能力。其次,通过引入反向注意力机制,并结合腐蚀和膨胀操作,提出一种反向注意下的扩缩区域增强上采样策略(expanded and scaled region enhanced upsampling strategy under reverse attention,ESRU),使得模型能够更好地捕捉边界和细节信息。DEMS-GIF模型通过结合TBBFF模块和ESRU策略,进一步提高了分割的准确性。结果 在CVC-ClinicDB、DDTI(digital database thyroid image)和Kvasir-SEG 3个数据集上进行对比实验和模块消融实验,评估提出的DEMS-GIF模型,并在CVC-ClinicDB数据集上进行参数消融实验,以了解DEMS-GIF中每个模块和结构内部的有效性。实验结果表明,DEMS-GIF模型的mIoU值分别达到94.74%、84.56%和88.46%,Dice值分别达到94.82%、82.95%和87.44%。与原UNet型通道变换网络相比,mIoU值分别提升3.73%、3.4%和5.24%,Dice值分别提升4.84%、5.45%和6.82%。结论 本文提出的DEMS-GIF网络模型较其他先进的分割方法的分割效果更优,表明了其在医学图像分割中的优越性。