Side streams from the milling industry offer excellent nutritional properties for animal feed;yet their use is constrained by the elevated phosphorus(P)content,mainly in the form of phytate.Biotechnological P recovery...Side streams from the milling industry offer excellent nutritional properties for animal feed;yet their use is constrained by the elevated phosphorus(P)content,mainly in the form of phytate.Biotechnological P recovery fosters sustainable P management,transforming these streams into P-depleted animal feed through enzymatic hydrolysis.The enzymatic P mobilization not only enables P recovery from milling by-products but also supports the valorization of these streams into P-depleted animal feeds.Our study presents the scalability and applicability of the process and characterizes the resulting P-depleted rye bran as animal feed component.Batch mode investigations were conducted to mobilize P from 100 g to 37.1 kg of rye bran using bioreactors up to 400 L.P reductions of 89%to 92%(reducing from 12.7 gP/kg to 1.41-1.28 gP/kg)were achieved.In addition,High Performance Ion Chromatography(HPIC)analysis showed complete depletion of phytate.The successful recovery of the enzymatically mobilized P from the process wastewater by precipitation as struvite and calcium hydrogen phosphate is presented as well,achieving up to 99%removal efficiency.Our study demonstrates a versatile process that is easily adaptable,allowing for a seamless implementation on a larger scale.展开更多
Gel polymer electrolytes(GPEs)present the best compromise between mechanical and electrochemical properties,as well as an improvement of the cell safety in the framework of Li metal batteries production.However,the po...Gel polymer electrolytes(GPEs)present the best compromise between mechanical and electrochemical properties,as well as an improvement of the cell safety in the framework of Li metal batteries production.However,the polymerization mechanism typically employed relies on the presence of an initiator,and is hindered by oxygen,thus impeding the industrial scale-up of the GPEs production.In this work,an UV-mediated thiol-ene polymerization,employing polyethylene glycol diacrylate(PEGDA)as oligomer,was carried out in a liquid electrolyte solution(1M LiTFSI in EC/DEC)to obtain a self-standing GPE.A comparative study between two different thiol-containing crosslinkers(trimethylolpropane tris(3-mercaptopropionate)-T3 and pentaerythritol tetrakis(3-mercaptopropionate)-T4)was carried out,studying the effects of the crosslinking environment and the GPE production methods on the cell performances.All the produced GPEs present an excellent room temperature ionic conductivity above 1 mS cm^(-1),as well as a wide electrochemical stability window up to 4.59 V.When cycled at a current density of C/10 for more than 250 cycles,all of the tested cells showed a stable cycling profile and a specific capacity>100 mAh g^(-1),indicating the suitability of such processes for up-scaling.展开更多
Based on the characteristics of fractured vuggy porous media,a novel mathematical model was proposed to model fluid flow in such media on fine scale,i.e.,the discrete fracture-vug network model.The new model consists ...Based on the characteristics of fractured vuggy porous media,a novel mathematical model was proposed to model fluid flow in such media on fine scale,i.e.,the discrete fracture-vug network model.The new model consists of three systems:porous rock system,fracture system,and vug system.The fractures and vugs are embedded in porous rock,and the isolated vugs could be connected via the discrete fracture network.The flow in porous rock and fractures follows Darcy's law,and the vugs system is free fluid region.Using a two-scale homogenization limit theory,we obtained a macroscopic Darcy's law governing the media on coarse scale.The theoretical formula of the equivalent permeability of the fractured vuggy porous media was derived.The model and method of this paper were verified by some numerical examples.At the end the permeability of some fractured vuggy porous media with typical fracture-vug structures was analyzed.展开更多
This paper describes how a validated semi-empirical,but physiologically based,remote sensing model-Ensemble_all-was upscaled using MODIS land surface temperature data(MOD11C2),enhanced vegetation indices(MOD13C1)and l...This paper describes how a validated semi-empirical,but physiologically based,remote sensing model-Ensemble_all-was upscaled using MODIS land surface temperature data(MOD11C2),enhanced vegetation indices(MOD13C1)and land-cover data(MCD12C1)to produce a global terrestrial ecosystem respiration data set(Reco)for January 2001-December 2010.The temporal resolution of this data set is 1 month,the spatial resolution is 0.05°,and the range is from 55°S to 65°N and 180°W to 180°E(crop and natural vegetation mosaic is not included).After crossvalidating our data set using in-situ observations as well as Reco outputs from an empirical variable_Q10 model,a LPJ_S1 process model and a machine learning method model,we found that our data set performed well in detecting both temporal and spatial patterns in Reco’s simulation in most ecosystems across the world.This data set can be found at http://www.dx.doi.org/10.11922/sciencedb.934.展开更多
基金funded by Deutsche Bundesstiftung Umwelt(PhANG,AZ 34976-01).
文摘Side streams from the milling industry offer excellent nutritional properties for animal feed;yet their use is constrained by the elevated phosphorus(P)content,mainly in the form of phytate.Biotechnological P recovery fosters sustainable P management,transforming these streams into P-depleted animal feed through enzymatic hydrolysis.The enzymatic P mobilization not only enables P recovery from milling by-products but also supports the valorization of these streams into P-depleted animal feeds.Our study presents the scalability and applicability of the process and characterizes the resulting P-depleted rye bran as animal feed component.Batch mode investigations were conducted to mobilize P from 100 g to 37.1 kg of rye bran using bioreactors up to 400 L.P reductions of 89%to 92%(reducing from 12.7 gP/kg to 1.41-1.28 gP/kg)were achieved.In addition,High Performance Ion Chromatography(HPIC)analysis showed complete depletion of phytate.The successful recovery of the enzymatically mobilized P from the process wastewater by precipitation as struvite and calcium hydrogen phosphate is presented as well,achieving up to 99%removal efficiency.Our study demonstrates a versatile process that is easily adaptable,allowing for a seamless implementation on a larger scale.
基金the project PNRR-NGEU,which has received funding from the MUR-DM 352/2022.
文摘Gel polymer electrolytes(GPEs)present the best compromise between mechanical and electrochemical properties,as well as an improvement of the cell safety in the framework of Li metal batteries production.However,the polymerization mechanism typically employed relies on the presence of an initiator,and is hindered by oxygen,thus impeding the industrial scale-up of the GPEs production.In this work,an UV-mediated thiol-ene polymerization,employing polyethylene glycol diacrylate(PEGDA)as oligomer,was carried out in a liquid electrolyte solution(1M LiTFSI in EC/DEC)to obtain a self-standing GPE.A comparative study between two different thiol-containing crosslinkers(trimethylolpropane tris(3-mercaptopropionate)-T3 and pentaerythritol tetrakis(3-mercaptopropionate)-T4)was carried out,studying the effects of the crosslinking environment and the GPE production methods on the cell performances.All the produced GPEs present an excellent room temperature ionic conductivity above 1 mS cm^(-1),as well as a wide electrochemical stability window up to 4.59 V.When cycled at a current density of C/10 for more than 250 cycles,all of the tested cells showed a stable cycling profile and a specific capacity>100 mAh g^(-1),indicating the suitability of such processes for up-scaling.
基金supported by the National Basic Research Program of China("973"Program)(Grant No.2006CB202404)
文摘Based on the characteristics of fractured vuggy porous media,a novel mathematical model was proposed to model fluid flow in such media on fine scale,i.e.,the discrete fracture-vug network model.The new model consists of three systems:porous rock system,fracture system,and vug system.The fractures and vugs are embedded in porous rock,and the isolated vugs could be connected via the discrete fracture network.The flow in porous rock and fractures follows Darcy's law,and the vugs system is free fluid region.Using a two-scale homogenization limit theory,we obtained a macroscopic Darcy's law governing the media on coarse scale.The theoretical formula of the equivalent permeability of the fractured vuggy porous media was derived.The model and method of this paper were verified by some numerical examples.At the end the permeability of some fractured vuggy porous media with typical fracture-vug structures was analyzed.
基金This work was jointly supported by the Strategic Priority Research Program of the Chinese Academy of Sciences(Grant No.XDA19030401)the Natural Science Foundation for Young Scientists of Hunan Province(Grant No.2020JJ5557)the General Project of the Hunan Provincial Education Department(Grant no.19C1845).
文摘This paper describes how a validated semi-empirical,but physiologically based,remote sensing model-Ensemble_all-was upscaled using MODIS land surface temperature data(MOD11C2),enhanced vegetation indices(MOD13C1)and land-cover data(MCD12C1)to produce a global terrestrial ecosystem respiration data set(Reco)for January 2001-December 2010.The temporal resolution of this data set is 1 month,the spatial resolution is 0.05°,and the range is from 55°S to 65°N and 180°W to 180°E(crop and natural vegetation mosaic is not included).After crossvalidating our data set using in-situ observations as well as Reco outputs from an empirical variable_Q10 model,a LPJ_S1 process model and a machine learning method model,we found that our data set performed well in detecting both temporal and spatial patterns in Reco’s simulation in most ecosystems across the world.This data set can be found at http://www.dx.doi.org/10.11922/sciencedb.934.