In this paper, we proposed the scheme for a passive round-robin differential-phase-shift quantum key distribution(RRDPS-QKD) set-up based on the principle of Hong–Ou–Mandel interference. Our scheme requires two le...In this paper, we proposed the scheme for a passive round-robin differential-phase-shift quantum key distribution(RRDPS-QKD) set-up based on the principle of Hong–Ou–Mandel interference. Our scheme requires two legitimate parties to prepare their signal state with two different non-orthogonal bases instead of single in original protocol. Incorporating this characteristic, we establish the level of security of our protocol under the intercept-resend attack and demonstrate its detector-flaw-immune feature. Furthermore, we show that our scheme not only inherits the merit of better tolerance of bit errors and finite-sized-key effects but can be implemented using hardware similar to the measurement device independent QKD(MDI-QKD). This ensures good compatibility with the current commonly used quantum system.展开更多
基金Project supported by the Fund from the State Key Laboratory of Information Photonics and Optical Communications(Beijing University of Posts and Telecommunications)(Grant No.IPOC2017ZT0)
文摘In this paper, we proposed the scheme for a passive round-robin differential-phase-shift quantum key distribution(RRDPS-QKD) set-up based on the principle of Hong–Ou–Mandel interference. Our scheme requires two legitimate parties to prepare their signal state with two different non-orthogonal bases instead of single in original protocol. Incorporating this characteristic, we establish the level of security of our protocol under the intercept-resend attack and demonstrate its detector-flaw-immune feature. Furthermore, we show that our scheme not only inherits the merit of better tolerance of bit errors and finite-sized-key effects but can be implemented using hardware similar to the measurement device independent QKD(MDI-QKD). This ensures good compatibility with the current commonly used quantum system.