期刊文献+
共找到293篇文章
< 1 2 15 >
每页显示 20 50 100
A novel method for clustering cellular data to improve classification
1
作者 Diek W.Wheeler Giorgio A.Ascoli 《Neural Regeneration Research》 SCIE CAS 2025年第9期2697-2705,共9页
Many fields,such as neuroscience,are experiencing the vast prolife ration of cellular data,underscoring the need fo r organizing and interpreting large datasets.A popular approach partitions data into manageable subse... Many fields,such as neuroscience,are experiencing the vast prolife ration of cellular data,underscoring the need fo r organizing and interpreting large datasets.A popular approach partitions data into manageable subsets via hierarchical clustering,but objective methods to determine the appropriate classification granularity are missing.We recently introduced a technique to systematically identify when to stop subdividing clusters based on the fundamental principle that cells must differ more between than within clusters.Here we present the corresponding protocol to classify cellular datasets by combining datadriven unsupervised hierarchical clustering with statistical testing.These general-purpose functions are applicable to any cellular dataset that can be organized as two-dimensional matrices of numerical values,including molecula r,physiological,and anatomical datasets.We demonstrate the protocol using cellular data from the Janelia MouseLight project to chara cterize morphological aspects of neurons. 展开更多
关键词 cellular data clustering dendrogram data classification Levene's one-tailed statistical test unsupervised hierarchical clustering
在线阅读 下载PDF
Unsupervised learning enabled label-free single-pixel imaging for resilient information transmission through unknown dynamic scattering media
2
作者 Fujie Li Haoyu Zhang +7 位作者 Zhilan Lu Li Yao Yuan Wei Ziwei Li Feng Bao Junwen Zhang Yingjun Zhou Nan Chi 《Opto-Electronic Advances》 2025年第10期1-13,共13页
Single-pixel imaging(SPI)is a prominent scattering media imaging technique that allows image transmission via one-dimensional detection under structured illumination,with applications spanning from long-range imaging ... Single-pixel imaging(SPI)is a prominent scattering media imaging technique that allows image transmission via one-dimensional detection under structured illumination,with applications spanning from long-range imaging to microscopy.Recent advancements leveraging deep learning(DL)have significantly improved SPI performance,especially at low compression ratios.However,most DL-based SPI methods proposed so far rely heavily on extensive labeled datasets for supervised training,which are often impractical in real-world scenarios.Here,we propose an unsupervised learningenabled label-free SPI method for resilient information transmission through unknown dynamic scattering media.Additionally,we introduce a physics-informed autoencoder framework to optimize encoding schemes,further enhancing image quality at low compression ratios.Simulation and experimental results demonstrate that high-efficiency data transmission with structural similarity exceeding 0.9 is achieved through challenging turbulent channels.Moreover,experiments demonstrate that in a 5 m underwater dynamic turbulent channel,USAF target imaging quality surpasses traditional methods by over 13 dB.The compressive encoded transmission of 720×720 resolution video exceeding 30 seconds with great fidelity is also successfully demonstrated.These preliminary results suggest that our proposed method opens up a new paradigm for resilient information transmission through unknown dynamic scattering media and holds potential for broader applications within many other scattering media imaging technologies. 展开更多
关键词 scattering media imaging single-pixel imaging unsupervised learning unsupervised domain adaptation deep learning
在线阅读 下载PDF
Unsupervised Meteorological Downscaling Based on Dual Learning and Subgrid-scale Auxiliary Information
3
作者 Jing HU Jialing MU +1 位作者 Xiaomeng HUANG Xi WU 《Advances in Atmospheric Sciences》 2025年第1期53-66,共14页
Climate downscaling is used to transform large-scale meteorological data into small-scale data with enhanced detail,which finds wide applications in climate modeling,numerical weather forecasting,and renewable energy.... Climate downscaling is used to transform large-scale meteorological data into small-scale data with enhanced detail,which finds wide applications in climate modeling,numerical weather forecasting,and renewable energy.Although deeplearning-based downscaling methods effectively capture the complex nonlinear mapping between meteorological data of varying scales,the supervised deep-learning-based downscaling methods suffer from insufficient high-resolution data in practice,and unsupervised methods struggle with accurately inferring small-scale specifics from limited large-scale inputs due to small-scale uncertainty.This article presents DualDS,a dual-learning framework utilizing a Generative Adversarial Network–based neural network and subgrid-scale auxiliary information for climate downscaling.Such a learning method is unified in a two-stream framework through up-and downsamplers,where the downsampler is used to simulate the information loss process during the upscaling,and the upsampler is used to reconstruct lost details and correct errors incurred during the upscaling.This dual learning strategy can eliminate the dependence on high-resolution ground truth data in the training process and refine the downscaling results by constraining the mapping process.Experimental findings demonstrate that DualDS is comparable to several state-of-the-art deep learning downscaling approaches,both qualitatively and quantitatively.Specifically,for a single surface-temperature data downscaling task,our method is comparable with other unsupervised algorithms with the same dataset,and we can achieve a 0.469 dB higher peak signal-to-noise ratio,0.017 higher structural similarity,0.08 lower RMSE,and the best correlation coefficient.In summary,this paper presents a novel approach to addressing small-scale uncertainty issues in unsupervised downscaling processes. 展开更多
关键词 DOWNSCALING UNSUPERVISED deep learning dual learning auxiliary information
在线阅读 下载PDF
FFD-Clustering:An unsupervised anomaly detection method for aero-engines based on fuzzy fusion of variables and discriminative mapping of features
4
作者 Zhe WANG Xuyun FU +2 位作者 Minghang ZHAO Xiangzhao XIA Shisheng ZHONG 《Chinese Journal of Aeronautics》 2025年第5期202-231,共30页
The original monitoring data from aero-engines possess characteristics such as high dimen-sionality,strong noise,and imbalance,which present substantial challenges to traditional anomalydetection methods.In response,t... The original monitoring data from aero-engines possess characteristics such as high dimen-sionality,strong noise,and imbalance,which present substantial challenges to traditional anomalydetection methods.In response,this paper proposes a method based on Fuzzy Fusion of variablesand Discriminant mapping of features for Clustering(FFD-Clustering)to detect anomalies in originalmonitoring data from Aircraft Communication Addressing and Reporting System(ACARS).Firstly,associated variables are fuzzily grouped to extract the underlying distribution characteristics and trendsfrom the data.Secondly,a multi-layer contrastive denoising-based feature Fusion Encoding Network(FEN)is designed for each variable group,which can construct representative features for each variablegroup through eliminating strong noise and complex interrelations between variables.Thirdly,a featureDiscriminative Mapping Network(DMN)based on reconstruction difference re-clustering is designed,which can distinguish dissimilar feature vectors when mapping representative features to a unified fea-ture space.Finally,the K-means clustering is used to detect the abnormal feature vectors in the unifiedfeature space.Additionally,the algorithm is capable of reconstructing identified abnormal vectors,thereby locating the abnormal variable groups.The performance of this algorithm was tested ontwo public datasets and real original monitoring data from four aero-engines'ACARS,demonstratingits superiority and application potential in aero-engine anomaly detection. 展开更多
关键词 AERO-ENGINE Anomaly detection UNSUPERVISED Fuzzy fusion Discriminativ emapping
原文传递
Unsupervised Anomaly Detection in Time Series Data via Enhanced VAE-Transformer Framework
5
作者 Chunhao Zhang Bin Xie Zhibin Huo 《Computers, Materials & Continua》 2025年第7期843-860,共18页
Time series anomaly detection is crucial in finance,healthcare,and industrial monitoring.However,traditional methods often face challenges when handling time series data,such as limited feature extraction capability,p... Time series anomaly detection is crucial in finance,healthcare,and industrial monitoring.However,traditional methods often face challenges when handling time series data,such as limited feature extraction capability,poor temporal dependency handling,and suboptimal real-time performance,sometimes even neglecting the temporal relationships between data.To address these issues and improve anomaly detection performance by better capturing temporal dependencies,we propose an unsupervised time series anomaly detection method,VLT-Anomaly.First,we enhance the Variational Autoencoder(VAE)module by redesigning its network structure to better suit anomaly detection through data reconstruction.We introduce hyperparameters to control the weight of the Kullback-Leibler(KL)divergence term in the Evidence Lower Bound(ELBO),thereby improving the encoder module’s decoupling and expressive power in the latent space,which yields more effective latent representations of the data.Next,we incorporate transformer and Long Short-Term Memory(LSTM)modules to estimate the long-term dependencies of the latent representations,capturing both forward and backward temporal relationships and performing time series forecasting.Finally,we compute the reconstruction error by averaging the predicted results and decoder reconstruction and detect anomalies through grid search for optimal threshold values.Experimental results demonstrate that the proposed method performs superior anomaly detection on multiple public time series datasets,effectively extracting complex time-related features and enabling efficient computation and real-time anomaly detection.It improves detection accuracy and robustness while reducing false positives and false negatives. 展开更多
关键词 Anomaly detection time series autoencoder TRANSFORMER UNSUPERVISED
在线阅读 下载PDF
Intelligent sitting postural anomaly detection system for wheelchair users with unsupervised techniques
6
作者 Patrick Vermander Aitziber Mancisidor +2 位作者 Raffaele Gravina Itziar Cabanes Giancarlo Fortino 《Digital Communications and Networks》 2025年第3期622-633,共12页
Detecting sitting posture abnormalities in wheelchair users enables early identification of changes in their functional status.To date,this detection has relied on in-person observation by medical specialists.However,... Detecting sitting posture abnormalities in wheelchair users enables early identification of changes in their functional status.To date,this detection has relied on in-person observation by medical specialists.However,given the challenges faced by health specialists to carry out continuous monitoring,the development of an intelligent anomaly detection system is proposed.Unlike other authors,where they use supervised techniques,this work proposes using unsupervised techniques due to the advantages they offer.These advantages include the lack of prior labeling of data,and the detection of anomalies previously not contemplated,among others.In the present work,an individualized methodology consisting of two phases is developed:characterizing the normal sitting pattern and determining abnormal samples.An analysis has been carried out between different unsupervised techniques to study which ones are more suitable for postural diagnosis.It can be concluded,among other aspects,that the utilization of dimensionality reduction techniques leads to improved results.Moreover,the normality characterization phase is deemed necessary for enhancing the system’s learning capabilities.Additionally,employing an individualized approach to the model aids in capturing the particularities of the various pathologies present among subjects. 展开更多
关键词 Sitting posture monitoring Anomaly detection Assistive technology Pressure sensors Unsupervised techniques INDIVIDUALIZATION WHEELCHAIR
在线阅读 下载PDF
Diff-Fastener:A Few-Shot Rail Fastener Anomaly Detection Framework Based on Diffusion Model
7
作者 Peng Sun Dechen Yao +1 位作者 Jianwei Yang Quanyu Long 《Structural Durability & Health Monitoring》 2025年第5期1221-1239,共19页
Supervised learning-based rail fastener anomaly detection models are limited by the scarcity of anomaly samples and perform poorly under data imbalance conditions.However,unsupervised anomaly detection methods based o... Supervised learning-based rail fastener anomaly detection models are limited by the scarcity of anomaly samples and perform poorly under data imbalance conditions.However,unsupervised anomaly detection methods based on diffusion models reduce the dependence on the number of anomalous samples but suffer from too many iterations and excessive smoothing of reconstructed images.In this work,we have established a rail fastener anomaly detection framework called Diff-Fastener,the diffusion model is introduced into the fastener detection task,half of the normal samples are converted into anomaly samples online in the model training stage,and One-Step denoising and canonical guided denoising paradigms are used instead of iterative denoising to improve the reconstruction efficiency of the model while solving the problem of excessive smoothing.DACM(Dilated Attention Convolution Module)is proposed in the middle layer of the reconstruction network to increase the detail information of the reconstructed image;meanwhile,Sparse-Skip connections are used instead of dense connections to reduce the computational load of themodel and enhance its scalability.Through exhaustive experiments onMVTec,VisA,and railroad fastener datasets,the results show that Diff-Fastener achieves 99.1%Image AUROC(Area Under the Receiver Operating Characteristic)and 98.9%Pixel AUROC on the railroad fastener dataset,which outperforms the existing models and achieves the best average score on MVTec and VisA datasets.Our research provides new ideas and directions in the field of anomaly detection for rail fasteners. 展开更多
关键词 Diffusion model anomaly detection unsupervised learning rail fastener
在线阅读 下载PDF
Predicting outcomes using neural networks in the intensive care unit
8
作者 Gumpeny R Sridhar Venkat Yarabati Lakshmi Gumpeny 《World Journal of Clinical Cases》 2025年第11期1-11,共11页
Patients in intensive care units(ICUs)require rapid critical decision making.Modern ICUs are data rich,where information streams from diverse sources.Machine learning(ML)and neural networks(NN)can leverage the rich da... Patients in intensive care units(ICUs)require rapid critical decision making.Modern ICUs are data rich,where information streams from diverse sources.Machine learning(ML)and neural networks(NN)can leverage the rich data for prognostication and clinical care.They can handle complex nonlinear relation-ships in medical data and have advantages over traditional predictive methods.A number of models are used:(1)Feedforward networks;and(2)Recurrent NN and convolutional NN to predict key outcomes such as mortality,length of stay in the ICU and the likelihood of complications.Current NN models exist in silos;their integration into clinical workflow requires greater transparency on data that are analyzed.Most models that are accurate enough for use in clinical care operate as‘black-boxes’in which the logic behind their decision making is opaque.Advan-ces have occurred to see through the opacity and peer into the processing of the black-box.In the near future ML is positioned to help in clinical decision making far beyond what is currently possible.Transparency is the first step toward vali-dation which is followed by clinical trust and adoption.In summary,NNs have the transformative ability to enhance predictive accuracy and improve patient management in ICUs.The concept should soon be turning into reality. 展开更多
关键词 Large language models HALLUCINATIONS Supervised learning Unsupervised learning Convoluted neural networks BLACK-BOX WORKFLOW
暂未订购
LP-CRI:Label Propagation Immune Generation Algorithm Based on Clustering and Rebound Mechanism
9
作者 Hao Huang Kongyu Yang 《Computers, Materials & Continua》 2025年第6期5373-5391,共19页
Many existing immune detection algorithms rely on a large volume of labeled self-training samples,which are often difficult to obtain in practical scenarios,thus limiting the training of detection models.Furthermore,n... Many existing immune detection algorithms rely on a large volume of labeled self-training samples,which are often difficult to obtain in practical scenarios,thus limiting the training of detection models.Furthermore,noise inherent in the samples can substantially degrade the detection accuracy of these algorithms.To overcome these challenges,we propose an immune generation algorithm that leverages clustering and a rebound mechanism for label propagation(LP-CRI).The dataset is randomly partitioned into multiple subsets,each of which undergoes clustering followed by label propagation and evaluation.The rebound mechanism assesses the model’s performance after propagation and determines whether to revert to its previous state,initiating a subsequent round of propagation to ensure stable and effective training.Experimental results demonstrate that the proposed method is both computationally efficient and easy to train,significantly enhancing detector performance and outperforming traditional immune detection algorithms. 展开更多
关键词 Artificial immunity label propagation detector generation unsupervised clustering
在线阅读 下载PDF
Advancing skin cancer detection integrating a novel unsupervised classification and enhanced imaging techniques
10
作者 MdAbdur Rahman Nur Mohammad Fahad +3 位作者 Mohaimenul Azam Khan Raiaan Mirjam Jonkman Friso De Boer Sami Azam 《CAAI Transactions on Intelligence Technology》 2025年第2期474-493,共20页
Skin cancer,a severe health threat,can spread rapidly if undetected.Therefore,early detection can lead to an advanced and efficient diagnosis,thus reducing mortality.Unsupervised classification techniques analyse exte... Skin cancer,a severe health threat,can spread rapidly if undetected.Therefore,early detection can lead to an advanced and efficient diagnosis,thus reducing mortality.Unsupervised classification techniques analyse extensive skin image datasets,identifying patterns and anomalies without prior labelling,facilitating early detection and effective diagnosis and potentially saving lives.In this study,the authors aim to explore the potential of unsupervised learning methods in classifying different types of skin lesions in dermatoscopic images.The authors aim to bridge the gap in dermatological research by introducing innovative techniques that enhance image quality and improve feature extraction.To achieve this,enhanced super-resolution generative adversarial networks(ESRGAN)was fine-tuned to strengthen the resolution of skin lesion images,making critical features more visible.The authors extracted histogram features to capture essential colour characteristics and used the Davies-Bouldin index and silhouette score to determine optimal clusters.Fine-tuned k-means clustering with Euclidean distance in the histogram feature space achieved 87.77% and 90.5% test accuracies on the ISIC2019 and HAM10000 datasets,respectively.The unsupervised approach effectively categorises skin lesions,indicating that unsupervised learning can significantly advance dermatology by enabling early detection and classification without extensive manual annotation. 展开更多
关键词 histogram feature optimal cluster skin lesion unsupervised classification
在线阅读 下载PDF
Densely-connected Decoder Transformer for unsupervised anomaly detection of power electronic systems
11
作者 Zhichen Zhang Gen Qiu +1 位作者 Yuhua Cheng Min Wang 《Journal of Automation and Intelligence》 2025年第3期217-226,共10页
Reliable electricity infrastructure is critical for modern society,highlighting the importance of securing the stability of fundamental power electronic systems.However,as such systems frequently involve high-current ... Reliable electricity infrastructure is critical for modern society,highlighting the importance of securing the stability of fundamental power electronic systems.However,as such systems frequently involve high-current and high-voltage conditions,there is a greater likelihood of failures.Consequently,anomaly detection of power electronic systems holds great significance,which is a task that properly-designed neural networks can well undertake,as proven in various scenarios.Transformer-like networks are promising for such application,yet with its structure initially designed for different tasks,features extracted by beginning layers are often lost,decreasing detection performance.Also,such data-driven methods typically require sufficient anomalous data for training,which could be difficult to obtain in practice.Therefore,to improve feature utilization while achieving efficient unsupervised learning,a novel model,Densely-connected Decoder Transformer(DDformer),is proposed for unsupervised anomaly detection of power electronic systems in this paper.First,efficient labelfree training is achieved based on the concept of autoencoder with recursive-free output.An encoder-decoder structure with densely-connected decoder is then adopted,merging features from all encoder layers to avoid possible loss of mined features while reducing training difficulty.Both simulation and real-world experiments are conducted to validate the capabilities of DDformer,and the average FDR has surpassed baseline models,reaching 89.39%,93.91%,95.98%in different experiment setups respectively. 展开更多
关键词 Power electronic systems Anomaly detection Transformer network Dense connection Unsupervised learning DDformer
在线阅读 下载PDF
Unsupervised Monocular Depth Estimation with Edge Enhancement for Dynamic Scenes
12
作者 Peicheng Shi Yueyue Tang +3 位作者 Yi Li Xinlong Dong Yu Sun Aixi Yang 《Computers, Materials & Continua》 2025年第8期3321-3343,共23页
In the dynamic scene of autonomous vehicles,the depth estimation of monocular cameras often faces the problem of inaccurate edge depth estimation.To solve this problem,we propose an unsupervised monocular depth estima... In the dynamic scene of autonomous vehicles,the depth estimation of monocular cameras often faces the problem of inaccurate edge depth estimation.To solve this problem,we propose an unsupervised monocular depth estimation model based on edge enhancement,which is specifically aimed at the depth perception challenge in dynamic scenes.The model consists of two core networks:a deep prediction network and a motion estimation network,both of which adopt an encoder-decoder architecture.The depth prediction network is based on the U-Net structure of ResNet18,which is responsible for generating the depth map of the scene.The motion estimation network is based on the U-Net structure of Flow-Net,focusing on the motion estimation of dynamic targets.In the decoding stage of the motion estimation network,we innovatively introduce an edge-enhanced decoder,which integrates a convolutional block attention module(CBAM)in the decoding process to enhance the recognition ability of the edge features of moving objects.In addition,we also designed a strip convolution module to improve the model’s capture efficiency of discrete moving targets.To further improve the performance of the model,we propose a novel edge regularization method based on the Laplace operator,which effectively accelerates the convergence process of themodel.Experimental results on the KITTI and Cityscapes datasets show that compared with the current advanced dynamic unsupervised monocular model,the proposed model has a significant improvement in depth estimation accuracy and convergence speed.Specifically,the rootmean square error(RMSE)is reduced by 4.8%compared with the DepthMotion algorithm,while the training convergence speed is increased by 36%,which shows the superior performance of the model in the depth estimation task in dynamic scenes. 展开更多
关键词 Dynamic scenes unsupervised learning monocular depth edge enhancement
在线阅读 下载PDF
Use of supervised and unsupervised approaches to make zonal application maps for variable-rate application of crop growth regulators in commercial cotton fields
13
作者 ANDREA Maria C.da S. OLIVEIRA Cristiano F.de +7 位作者 MOTA Fabrícia C.M. SANTOS Rafael C.dos RODRIGUES JUNIOR Edilson F. BIANCHI Lucas M. OLIVEIRA Rodrigo S.de GOUVEIA Caio M.de BARBOSA Victor G.S. BISPO E SILVA Marco A. 《Journal of Cotton Research》 2025年第1期1-20,共20页
Background Zonal application maps are designed to represent field variability using key variables that can be translated into tailored management practices.For cotton,zonal maps for crop growth regulator(CGR)applicati... Background Zonal application maps are designed to represent field variability using key variables that can be translated into tailored management practices.For cotton,zonal maps for crop growth regulator(CGR)applications under variable-rate(VR)strategies are commonly based exclusively on vegetation indices(VIs)variability.However,VIs often saturate in dense crop vegetation areas,limiting their effectiveness in distinguishing variability in crop growth.This study aimed to compare unsupervised framework(UF)and supervised framework(SUF)approaches for generat-ing zonal application maps for CGR under VR conditions.During 2022-2023 agricultural seasons,an UF was employed to generate zonal maps based on locally collected field data on plant height of cotton,satellite imagery,soil texture,and phenology data.Subsequently,a SUF(based on historical data between 2020-2021 to 2022-2023 agricultural seasons)was developed to predict plant height using remote sensing and phenology data,aiming to replicate same zonal maps but without relying on direct field measurements of plant height.Both approaches were tested in three fields and on two different dates per field.Results The predictive model for plant height of SUF performed well,as indicated by the model metrics.However,when comparing zonal application maps for specific field-date combinations,the predicted plant height exhibited lower variability compared with field measurements.This led to variable compatibility between SUF maps,which utilized the model predictions,and the UF maps,which were based on the real field data.Fields characterized by much pronounced soil texture variability yielded the highest compatibility between the zonal application maps produced by both SUF and UF approaches.This was predominantly due to the greater consistency in estimating plant development patterns within these heterogeneous field environments.While VR application approach can facilitate product savings during the application operation,other key factors must be considered.These include the availability of specialized machinery required for this type of applications,as well as the inherent operational costs associated with applying a single CGR product which differs from the typical uniform rate applications that often integrate multi-ple inputs.Conclusion Predictive modeling shows promise for assisting in the creation of zonal application maps for VR of CGR applications.However,the degree of agreement with the actual variability in crop growth found in the field should be evaluated on a field-by-field basis.The SUF approach,which is based on plant heigh prediction,demonstrated potential for supporting the development of zonal application maps for VR of CGR applications.However,the degree to which this approach aligns itself with the actual variability in crop growth observed in the field may vary,necessi-tating field-by-field evaluation. 展开更多
关键词 Cotton Site-specific management Crop growth regulator Unsupervised framework Supervised framework Zonal application maps
在线阅读 下载PDF
An Optimized Unsupervised Defect Detection Approach via Federated Learning and Adaptive Embeddings Knowledge Distillation
14
作者 Jinhai Wang Junwei Xue +5 位作者 Hongyan Zhang Hui Xiao Huiling Wei Mingyou Chen Jiang Liao Lufeng Luo 《Computers, Materials & Continua》 2025年第7期1839-1861,共23页
Defect detection based on computer vision is a critical component in ensuring the quality of industrial products.However,existing detection methods encounter several challenges in practical applications,including the ... Defect detection based on computer vision is a critical component in ensuring the quality of industrial products.However,existing detection methods encounter several challenges in practical applications,including the scarcity of labeled samples,limited adaptability of pre-trained models,and the data heterogeneity in distributed environments.To address these issues,this research proposes an unsupervised defect detection method,FLAME(Federated Learning with Adaptive Multi-Model Embeddings).The method comprises three stages:(1)Feature learning stage:this work proposes FADE(Feature-Adaptive Domain-Specific Embeddings),a framework employs Gaussian noise injection to simulate defective patterns and implements a feature discriminator for defect detection,thereby enhancing the pre-trained model’s industrial imagery representation capabilities.(2)Knowledge distillation co-training stage:a multi-model feature knowledge distillation mechanism is introduced.Through feature-level knowledge transfer between the global model and historical local models,the current local model is guided to learn better feature representations from the global model.The approach prevents local models from converging to local optima and mitigates performance degradation caused by data heterogeneity.(3)Model parameter aggregation stage:participating clients utilize weighted averaging aggregation to synthesize an updated global model,facilitating efficient knowledge consolidation.Experimental results demonstrate that FADE improves the average image-level Area under the Receiver Operating Characteristic Curve(AUROC)by 7.34%compared to methods directly utilizing pre-trained models.In federated learning environments,FLAME’s multi-model feature knowledge distillation mechanism outperforms the classic FedAvg algorithm by 2.34%in average image-level AUROC,while exhibiting superior convergence properties. 展开更多
关键词 Federated learning defect detection knowledge distillation unsupervised learning
在线阅读 下载PDF
USDE:An Unsupervised Web Data Extraction Method Based on Statistical Characteristics
15
作者 Sun Long 《China Communications》 2025年第9期307-319,共13页
Web data extraction has become a key technology for extracting valuable data from websites.At present,most extraction methods based on rule learning,visual pattern or tree matching have limited performance on complex ... Web data extraction has become a key technology for extracting valuable data from websites.At present,most extraction methods based on rule learning,visual pattern or tree matching have limited performance on complex web pages.Through ana-lyzing various statistical characteristics of HTML el-ements in web documents,this paper proposes,based on statistical features,an unsupervised web data ex-traction method—traversing the HTML DOM parse tree at first,calculating and generating the statistical matrix of the elements,and then locating data records by clustering method and heuristic rules that reveal in-herent links between the visual characteristics of the data recording areas and the statistical characteristics of the HTML nodes—which is both suitable for data records extraction of single-page and multi-pages,and it has strong generality and needs no training.The ex-periments show that the accuracy and efficiency of this method are equally better than the current data extrac-tion method. 展开更多
关键词 cluster method statistical feature unsupervised technique web information extraction
在线阅读 下载PDF
Multi-level distribution alignment-based domain adaptation for segmentation of 3D neuronal soma images
16
作者 Li Ma Xuantai Xu Xiaoquan Yang 《Journal of Innovative Optical Health Sciences》 2025年第6期69-85,共17页
Deep learning networks are increasingly exploited in the field of neuronal soma segmentation.However,annotating dataset is also an expensive and time-consuming task.Unsupervised domain adaptation is an effective metho... Deep learning networks are increasingly exploited in the field of neuronal soma segmentation.However,annotating dataset is also an expensive and time-consuming task.Unsupervised domain adaptation is an effective method to mitigate the problem,which is able to learn an adaptive segmentation model by transferring knowledge from a rich-labeled source domain.In this paper,we propose a multi-level distribution alignment-based unsupervised domain adaptation network(MDA-Net)for segmentation of 3D neuronal soma images.Distribution alignment is performed in both feature space and output space.In the feature space,features from different scales are adaptively fused to enhance the feature extraction capability for small target somata and con-strained to be domain invariant by adversarial adaptation strategy.In the output space,local discrepancy maps that can reveal the spatial structures of somata are constructed on the predicted segmentation results.Then thedistribution alignment is performed on the local discrepancies maps across domains to obtain a superior discrepancy map in the target domain,achieving refined segmentation performance of neuronal somata.Additionally,after a period of distribution align-ment procedure,a portion of target samples with high confident pseudo-labels are selected as training data,which assist in learning a more adaptive segmentation network.We verified the superiority of the proposed algorithm by comparing several domain adaptation networks on two 3D mouse brain neuronal somata datasets and one macaque brain neuronal soma dataset. 展开更多
关键词 Unsupervised domain adaptation multi-level distribution alignment pseudo-labels 3D neuronal soma images
原文传递
Surprisal-based algorithm for detecting anomalies in categorical data
17
作者 Ossama Cherkaoui Houda Anoun Abderrahim Maizate 《Data Science and Management》 2025年第2期185-195,共11页
Anomaly detection is an important research area in a diverse range of real-world applications.Although many algorithms have been proposed to address anomaly detection for numerical datasets,categorical and mixed datas... Anomaly detection is an important research area in a diverse range of real-world applications.Although many algorithms have been proposed to address anomaly detection for numerical datasets,categorical and mixed datasets remain a significant challenge,primarily because a natural distance metric is lacking.Consequently,the methods proposed in the literature implement entirely different assumptions regarding the definition of cate-gorical anomalies.This paper presents a novel categorical anomaly detection approach,offering two key con-tributions to existing methods.First,a novel surprisal-based anomaly score is introduced,which provides a more accurate assessment of anomalies by considering the full distribution of categorical values.Second,the proposed method considers complex correlations in the data beyond the pairwise interactions of features.This study proposed and tested the novel categorical surprisal anomaly detection algorithm(CSAD)by comparing and evaluating it against six competitors.The experimental results indicate that CSAD produced the best overall performance,achieving the highest average ROC-AUC and PR-AUC values of 0.8 and 0.443,respectively.Furthermore,CSAD's execution time is satisfactory even when processing large,high-dimensional datasets. 展开更多
关键词 Unsupervised learning Anomaly detection Categorical data Surprisal anomaly score
在线阅读 下载PDF
Two-Stream Auto-Encoder Network for Unsupervised Skeleton-Based Action Recognition
18
作者 WANG Gang GUAN Yaonan LI Dewei 《Journal of Shanghai Jiaotong university(Science)》 2025年第2期330-336,共7页
Representation learning from unlabeled skeleton data is a challenging task.Prior unsupervised learning algorithms mainly rely on the modeling ability of recurrent neural networks to extract the action representations.... Representation learning from unlabeled skeleton data is a challenging task.Prior unsupervised learning algorithms mainly rely on the modeling ability of recurrent neural networks to extract the action representations.However,the structural information of the skeleton data,which also plays a critical role in action recognition,is rarely explored in existing unsupervised methods.To deal with this limitation,we propose a novel twostream autoencoder network to combine the topological information with temporal information of skeleton data.Specifically,we encode the graph structure by graph convolutional network(GCN)and integrate the extracted GCN-based representations into the gate recurrent unit stream.Then we design a transfer module to merge the representations of the two streams adaptively.According to the characteristics of the two-stream autoencoder,a unified loss function composed of multiple tasks is proposed to update the learnable parameters of our model.Comprehensive experiments on NW-UCLA,UWA3D,and NTU-RGBD 60 datasets demonstrate that our proposed method can achieve an excellent performance among the unsupervised skeleton-based methods and even perform a similar or superior performance over numerous supervised skeleton-based methods. 展开更多
关键词 representation learning skeleton-based action recognition unsupervised deep learning
原文传递
Pseudo Label Purification with Dual Contrastive Learning for Unsupervised Vehicle Re-Identification
19
作者 Jiyang Xu Qi Wang +4 位作者 Xin Xiong Weidong Min Jiang Luo Di Gai Qing Han 《Computers, Materials & Continua》 2025年第3期3921-3941,共21页
The unsupervised vehicle re-identification task aims at identifying specific vehicles in surveillance videos without utilizing annotation information.Due to the higher similarity in appearance between vehicles compare... The unsupervised vehicle re-identification task aims at identifying specific vehicles in surveillance videos without utilizing annotation information.Due to the higher similarity in appearance between vehicles compared to pedestrians,pseudo-labels generated through clustering are ineffective in mitigating the impact of noise,and the feature distance between inter-class and intra-class has not been adequately improved.To address the aforementioned issues,we design a dual contrastive learning method based on knowledge distillation.During each iteration,we utilize a teacher model to randomly partition the entire dataset into two sub-domains based on clustering pseudo-label categories.By conducting contrastive learning between the two student models,we extract more discernible vehicle identity cues to improve the problem of imbalanced data distribution.Subsequently,we propose a context-aware pseudo label refinement strategy that leverages contextual features by progressively associating granularity information from different bottleneck blocks.To produce more trustworthy pseudo-labels and lessen noise interference during the clustering process,the context-aware scores are obtained by calculating the similarity between global features and contextual ones,which are subsequently added to the pseudo-label encoding process.The proposed method has achieved excellent performance in overcoming label noise and optimizing data distribution through extensive experimental results on publicly available datasets. 展开更多
关键词 Unsupervised vehicle re-identification dual contrastive learning pseudo label refinement knowledge distillation
在线阅读 下载PDF
Leci:Learnable Evolutionary Category Intermediates for Unsupervised Domain Adaptive Segmentation
20
作者 Qiming ZHANG Yufei XU +1 位作者 Jing ZHANG Dacheng TAO 《Artificial Intelligence Science and Engineering》 2025年第1期37-51,共15页
To avoid the laborious annotation process for dense prediction tasks like semantic segmentation,unsupervised domain adaptation(UDA)methods have been proposed to leverage the abundant annotations from a source domain,s... To avoid the laborious annotation process for dense prediction tasks like semantic segmentation,unsupervised domain adaptation(UDA)methods have been proposed to leverage the abundant annotations from a source domain,such as virtual world(e.g.,3D games),and adapt models to the target domain(the real world)by narrowing the domain discrepancies.However,because of the large domain gap,directly aligning two distinct domains without considering the intermediates leads to inefficient alignment and inferior adaptation.To address this issue,we propose a novel learnable evolutionary Category Intermediates(CIs)guided UDA model named Leci,which enables the information transfer between the two domains via two processes,i.e.,Distilling and Blending.Starting from a random initialization,the CIs learn shared category-wise semantics automatically from two domains in the Distilling process.Then,the learned semantics in the CIs are sent back to blend the domain features through a residual attentive fusion(RAF)module,such that the categorywise features of both domains shift towards each other.As the CIs progressively and consistently learn from the varying feature distributions during training,they are evolutionary to guide the model to achieve category-wise feature alignment.Experiments on both GTA5 and SYNTHIA datasets demonstrate Leci's superiority over prior representative methods. 展开更多
关键词 unsupervised domain adaptation semantic segmentation deep learning
在线阅读 下载PDF
上一页 1 2 15 下一页 到第
使用帮助 返回顶部