Detecting sitting posture abnormalities in wheelchair users enables early identification of changes in their functional status.To date,this detection has relied on in-person observation by medical specialists.However,...Detecting sitting posture abnormalities in wheelchair users enables early identification of changes in their functional status.To date,this detection has relied on in-person observation by medical specialists.However,given the challenges faced by health specialists to carry out continuous monitoring,the development of an intelligent anomaly detection system is proposed.Unlike other authors,where they use supervised techniques,this work proposes using unsupervised techniques due to the advantages they offer.These advantages include the lack of prior labeling of data,and the detection of anomalies previously not contemplated,among others.In the present work,an individualized methodology consisting of two phases is developed:characterizing the normal sitting pattern and determining abnormal samples.An analysis has been carried out between different unsupervised techniques to study which ones are more suitable for postural diagnosis.It can be concluded,among other aspects,that the utilization of dimensionality reduction techniques leads to improved results.Moreover,the normality characterization phase is deemed necessary for enhancing the system’s learning capabilities.Additionally,employing an individualized approach to the model aids in capturing the particularities of the various pathologies present among subjects.展开更多
Climate downscaling is used to transform large-scale meteorological data into small-scale data with enhanced detail,which finds wide applications in climate modeling,numerical weather forecasting,and renewable energy....Climate downscaling is used to transform large-scale meteorological data into small-scale data with enhanced detail,which finds wide applications in climate modeling,numerical weather forecasting,and renewable energy.Although deeplearning-based downscaling methods effectively capture the complex nonlinear mapping between meteorological data of varying scales,the supervised deep-learning-based downscaling methods suffer from insufficient high-resolution data in practice,and unsupervised methods struggle with accurately inferring small-scale specifics from limited large-scale inputs due to small-scale uncertainty.This article presents DualDS,a dual-learning framework utilizing a Generative Adversarial Network–based neural network and subgrid-scale auxiliary information for climate downscaling.Such a learning method is unified in a two-stream framework through up-and downsamplers,where the downsampler is used to simulate the information loss process during the upscaling,and the upsampler is used to reconstruct lost details and correct errors incurred during the upscaling.This dual learning strategy can eliminate the dependence on high-resolution ground truth data in the training process and refine the downscaling results by constraining the mapping process.Experimental findings demonstrate that DualDS is comparable to several state-of-the-art deep learning downscaling approaches,both qualitatively and quantitatively.Specifically,for a single surface-temperature data downscaling task,our method is comparable with other unsupervised algorithms with the same dataset,and we can achieve a 0.469 dB higher peak signal-to-noise ratio,0.017 higher structural similarity,0.08 lower RMSE,and the best correlation coefficient.In summary,this paper presents a novel approach to addressing small-scale uncertainty issues in unsupervised downscaling processes.展开更多
The original monitoring data from aero-engines possess characteristics such as high dimen-sionality,strong noise,and imbalance,which present substantial challenges to traditional anomalydetection methods.In response,t...The original monitoring data from aero-engines possess characteristics such as high dimen-sionality,strong noise,and imbalance,which present substantial challenges to traditional anomalydetection methods.In response,this paper proposes a method based on Fuzzy Fusion of variablesand Discriminant mapping of features for Clustering(FFD-Clustering)to detect anomalies in originalmonitoring data from Aircraft Communication Addressing and Reporting System(ACARS).Firstly,associated variables are fuzzily grouped to extract the underlying distribution characteristics and trendsfrom the data.Secondly,a multi-layer contrastive denoising-based feature Fusion Encoding Network(FEN)is designed for each variable group,which can construct representative features for each variablegroup through eliminating strong noise and complex interrelations between variables.Thirdly,a featureDiscriminative Mapping Network(DMN)based on reconstruction difference re-clustering is designed,which can distinguish dissimilar feature vectors when mapping representative features to a unified fea-ture space.Finally,the K-means clustering is used to detect the abnormal feature vectors in the unifiedfeature space.Additionally,the algorithm is capable of reconstructing identified abnormal vectors,thereby locating the abnormal variable groups.The performance of this algorithm was tested ontwo public datasets and real original monitoring data from four aero-engines'ACARS,demonstratingits superiority and application potential in aero-engine anomaly detection.展开更多
Time series anomaly detection is crucial in finance,healthcare,and industrial monitoring.However,traditional methods often face challenges when handling time series data,such as limited feature extraction capability,p...Time series anomaly detection is crucial in finance,healthcare,and industrial monitoring.However,traditional methods often face challenges when handling time series data,such as limited feature extraction capability,poor temporal dependency handling,and suboptimal real-time performance,sometimes even neglecting the temporal relationships between data.To address these issues and improve anomaly detection performance by better capturing temporal dependencies,we propose an unsupervised time series anomaly detection method,VLT-Anomaly.First,we enhance the Variational Autoencoder(VAE)module by redesigning its network structure to better suit anomaly detection through data reconstruction.We introduce hyperparameters to control the weight of the Kullback-Leibler(KL)divergence term in the Evidence Lower Bound(ELBO),thereby improving the encoder module’s decoupling and expressive power in the latent space,which yields more effective latent representations of the data.Next,we incorporate transformer and Long Short-Term Memory(LSTM)modules to estimate the long-term dependencies of the latent representations,capturing both forward and backward temporal relationships and performing time series forecasting.Finally,we compute the reconstruction error by averaging the predicted results and decoder reconstruction and detect anomalies through grid search for optimal threshold values.Experimental results demonstrate that the proposed method performs superior anomaly detection on multiple public time series datasets,effectively extracting complex time-related features and enabling efficient computation and real-time anomaly detection.It improves detection accuracy and robustness while reducing false positives and false negatives.展开更多
Reliable electricity infrastructure is critical for modern society,highlighting the importance of securing the stability of fundamental power electronic systems.However,as such systems frequently involve high-current ...Reliable electricity infrastructure is critical for modern society,highlighting the importance of securing the stability of fundamental power electronic systems.However,as such systems frequently involve high-current and high-voltage conditions,there is a greater likelihood of failures.Consequently,anomaly detection of power electronic systems holds great significance,which is a task that properly-designed neural networks can well undertake,as proven in various scenarios.Transformer-like networks are promising for such application,yet with its structure initially designed for different tasks,features extracted by beginning layers are often lost,decreasing detection performance.Also,such data-driven methods typically require sufficient anomalous data for training,which could be difficult to obtain in practice.Therefore,to improve feature utilization while achieving efficient unsupervised learning,a novel model,Densely-connected Decoder Transformer(DDformer),is proposed for unsupervised anomaly detection of power electronic systems in this paper.First,efficient labelfree training is achieved based on the concept of autoencoder with recursive-free output.An encoder-decoder structure with densely-connected decoder is then adopted,merging features from all encoder layers to avoid possible loss of mined features while reducing training difficulty.Both simulation and real-world experiments are conducted to validate the capabilities of DDformer,and the average FDR has surpassed baseline models,reaching 89.39%,93.91%,95.98%in different experiment setups respectively.展开更多
Background Zonal application maps are designed to represent field variability using key variables that can be translated into tailored management practices.For cotton,zonal maps for crop growth regulator(CGR)applicati...Background Zonal application maps are designed to represent field variability using key variables that can be translated into tailored management practices.For cotton,zonal maps for crop growth regulator(CGR)applications under variable-rate(VR)strategies are commonly based exclusively on vegetation indices(VIs)variability.However,VIs often saturate in dense crop vegetation areas,limiting their effectiveness in distinguishing variability in crop growth.This study aimed to compare unsupervised framework(UF)and supervised framework(SUF)approaches for generat-ing zonal application maps for CGR under VR conditions.During 2022-2023 agricultural seasons,an UF was employed to generate zonal maps based on locally collected field data on plant height of cotton,satellite imagery,soil texture,and phenology data.Subsequently,a SUF(based on historical data between 2020-2021 to 2022-2023 agricultural seasons)was developed to predict plant height using remote sensing and phenology data,aiming to replicate same zonal maps but without relying on direct field measurements of plant height.Both approaches were tested in three fields and on two different dates per field.Results The predictive model for plant height of SUF performed well,as indicated by the model metrics.However,when comparing zonal application maps for specific field-date combinations,the predicted plant height exhibited lower variability compared with field measurements.This led to variable compatibility between SUF maps,which utilized the model predictions,and the UF maps,which were based on the real field data.Fields characterized by much pronounced soil texture variability yielded the highest compatibility between the zonal application maps produced by both SUF and UF approaches.This was predominantly due to the greater consistency in estimating plant development patterns within these heterogeneous field environments.While VR application approach can facilitate product savings during the application operation,other key factors must be considered.These include the availability of specialized machinery required for this type of applications,as well as the inherent operational costs associated with applying a single CGR product which differs from the typical uniform rate applications that often integrate multi-ple inputs.Conclusion Predictive modeling shows promise for assisting in the creation of zonal application maps for VR of CGR applications.However,the degree of agreement with the actual variability in crop growth found in the field should be evaluated on a field-by-field basis.The SUF approach,which is based on plant heigh prediction,demonstrated potential for supporting the development of zonal application maps for VR of CGR applications.However,the degree to which this approach aligns itself with the actual variability in crop growth observed in the field may vary,necessi-tating field-by-field evaluation.展开更多
Skin cancer,a severe health threat,can spread rapidly if undetected.Therefore,early detection can lead to an advanced and efficient diagnosis,thus reducing mortality.Unsupervised classification techniques analyse exte...Skin cancer,a severe health threat,can spread rapidly if undetected.Therefore,early detection can lead to an advanced and efficient diagnosis,thus reducing mortality.Unsupervised classification techniques analyse extensive skin image datasets,identifying patterns and anomalies without prior labelling,facilitating early detection and effective diagnosis and potentially saving lives.In this study,the authors aim to explore the potential of unsupervised learning methods in classifying different types of skin lesions in dermatoscopic images.The authors aim to bridge the gap in dermatological research by introducing innovative techniques that enhance image quality and improve feature extraction.To achieve this,enhanced super-resolution generative adversarial networks(ESRGAN)was fine-tuned to strengthen the resolution of skin lesion images,making critical features more visible.The authors extracted histogram features to capture essential colour characteristics and used the Davies-Bouldin index and silhouette score to determine optimal clusters.Fine-tuned k-means clustering with Euclidean distance in the histogram feature space achieved 87.77% and 90.5% test accuracies on the ISIC2019 and HAM10000 datasets,respectively.The unsupervised approach effectively categorises skin lesions,indicating that unsupervised learning can significantly advance dermatology by enabling early detection and classification without extensive manual annotation.展开更多
In the dynamic scene of autonomous vehicles,the depth estimation of monocular cameras often faces the problem of inaccurate edge depth estimation.To solve this problem,we propose an unsupervised monocular depth estima...In the dynamic scene of autonomous vehicles,the depth estimation of monocular cameras often faces the problem of inaccurate edge depth estimation.To solve this problem,we propose an unsupervised monocular depth estimation model based on edge enhancement,which is specifically aimed at the depth perception challenge in dynamic scenes.The model consists of two core networks:a deep prediction network and a motion estimation network,both of which adopt an encoder-decoder architecture.The depth prediction network is based on the U-Net structure of ResNet18,which is responsible for generating the depth map of the scene.The motion estimation network is based on the U-Net structure of Flow-Net,focusing on the motion estimation of dynamic targets.In the decoding stage of the motion estimation network,we innovatively introduce an edge-enhanced decoder,which integrates a convolutional block attention module(CBAM)in the decoding process to enhance the recognition ability of the edge features of moving objects.In addition,we also designed a strip convolution module to improve the model’s capture efficiency of discrete moving targets.To further improve the performance of the model,we propose a novel edge regularization method based on the Laplace operator,which effectively accelerates the convergence process of themodel.Experimental results on the KITTI and Cityscapes datasets show that compared with the current advanced dynamic unsupervised monocular model,the proposed model has a significant improvement in depth estimation accuracy and convergence speed.Specifically,the rootmean square error(RMSE)is reduced by 4.8%compared with the DepthMotion algorithm,while the training convergence speed is increased by 36%,which shows the superior performance of the model in the depth estimation task in dynamic scenes.展开更多
Defect detection based on computer vision is a critical component in ensuring the quality of industrial products.However,existing detection methods encounter several challenges in practical applications,including the ...Defect detection based on computer vision is a critical component in ensuring the quality of industrial products.However,existing detection methods encounter several challenges in practical applications,including the scarcity of labeled samples,limited adaptability of pre-trained models,and the data heterogeneity in distributed environments.To address these issues,this research proposes an unsupervised defect detection method,FLAME(Federated Learning with Adaptive Multi-Model Embeddings).The method comprises three stages:(1)Feature learning stage:this work proposes FADE(Feature-Adaptive Domain-Specific Embeddings),a framework employs Gaussian noise injection to simulate defective patterns and implements a feature discriminator for defect detection,thereby enhancing the pre-trained model’s industrial imagery representation capabilities.(2)Knowledge distillation co-training stage:a multi-model feature knowledge distillation mechanism is introduced.Through feature-level knowledge transfer between the global model and historical local models,the current local model is guided to learn better feature representations from the global model.The approach prevents local models from converging to local optima and mitigates performance degradation caused by data heterogeneity.(3)Model parameter aggregation stage:participating clients utilize weighted averaging aggregation to synthesize an updated global model,facilitating efficient knowledge consolidation.Experimental results demonstrate that FADE improves the average image-level Area under the Receiver Operating Characteristic Curve(AUROC)by 7.34%compared to methods directly utilizing pre-trained models.In federated learning environments,FLAME’s multi-model feature knowledge distillation mechanism outperforms the classic FedAvg algorithm by 2.34%in average image-level AUROC,while exhibiting superior convergence properties.展开更多
Web data extraction has become a key technology for extracting valuable data from websites.At present,most extraction methods based on rule learning,visual pattern or tree matching have limited performance on complex ...Web data extraction has become a key technology for extracting valuable data from websites.At present,most extraction methods based on rule learning,visual pattern or tree matching have limited performance on complex web pages.Through ana-lyzing various statistical characteristics of HTML el-ements in web documents,this paper proposes,based on statistical features,an unsupervised web data ex-traction method—traversing the HTML DOM parse tree at first,calculating and generating the statistical matrix of the elements,and then locating data records by clustering method and heuristic rules that reveal in-herent links between the visual characteristics of the data recording areas and the statistical characteristics of the HTML nodes—which is both suitable for data records extraction of single-page and multi-pages,and it has strong generality and needs no training.The ex-periments show that the accuracy and efficiency of this method are equally better than the current data extrac-tion method.展开更多
The unsupervised vehicle re-identification task aims at identifying specific vehicles in surveillance videos without utilizing annotation information.Due to the higher similarity in appearance between vehicles compare...The unsupervised vehicle re-identification task aims at identifying specific vehicles in surveillance videos without utilizing annotation information.Due to the higher similarity in appearance between vehicles compared to pedestrians,pseudo-labels generated through clustering are ineffective in mitigating the impact of noise,and the feature distance between inter-class and intra-class has not been adequately improved.To address the aforementioned issues,we design a dual contrastive learning method based on knowledge distillation.During each iteration,we utilize a teacher model to randomly partition the entire dataset into two sub-domains based on clustering pseudo-label categories.By conducting contrastive learning between the two student models,we extract more discernible vehicle identity cues to improve the problem of imbalanced data distribution.Subsequently,we propose a context-aware pseudo label refinement strategy that leverages contextual features by progressively associating granularity information from different bottleneck blocks.To produce more trustworthy pseudo-labels and lessen noise interference during the clustering process,the context-aware scores are obtained by calculating the similarity between global features and contextual ones,which are subsequently added to the pseudo-label encoding process.The proposed method has achieved excellent performance in overcoming label noise and optimizing data distribution through extensive experimental results on publicly available datasets.展开更多
Representation learning from unlabeled skeleton data is a challenging task.Prior unsupervised learning algorithms mainly rely on the modeling ability of recurrent neural networks to extract the action representations....Representation learning from unlabeled skeleton data is a challenging task.Prior unsupervised learning algorithms mainly rely on the modeling ability of recurrent neural networks to extract the action representations.However,the structural information of the skeleton data,which also plays a critical role in action recognition,is rarely explored in existing unsupervised methods.To deal with this limitation,we propose a novel twostream autoencoder network to combine the topological information with temporal information of skeleton data.Specifically,we encode the graph structure by graph convolutional network(GCN)and integrate the extracted GCN-based representations into the gate recurrent unit stream.Then we design a transfer module to merge the representations of the two streams adaptively.According to the characteristics of the two-stream autoencoder,a unified loss function composed of multiple tasks is proposed to update the learnable parameters of our model.Comprehensive experiments on NW-UCLA,UWA3D,and NTU-RGBD 60 datasets demonstrate that our proposed method can achieve an excellent performance among the unsupervised skeleton-based methods and even perform a similar or superior performance over numerous supervised skeleton-based methods.展开更多
To avoid the laborious annotation process for dense prediction tasks like semantic segmentation,unsupervised domain adaptation(UDA)methods have been proposed to leverage the abundant annotations from a source domain,s...To avoid the laborious annotation process for dense prediction tasks like semantic segmentation,unsupervised domain adaptation(UDA)methods have been proposed to leverage the abundant annotations from a source domain,such as virtual world(e.g.,3D games),and adapt models to the target domain(the real world)by narrowing the domain discrepancies.However,because of the large domain gap,directly aligning two distinct domains without considering the intermediates leads to inefficient alignment and inferior adaptation.To address this issue,we propose a novel learnable evolutionary Category Intermediates(CIs)guided UDA model named Leci,which enables the information transfer between the two domains via two processes,i.e.,Distilling and Blending.Starting from a random initialization,the CIs learn shared category-wise semantics automatically from two domains in the Distilling process.Then,the learned semantics in the CIs are sent back to blend the domain features through a residual attentive fusion(RAF)module,such that the categorywise features of both domains shift towards each other.As the CIs progressively and consistently learn from the varying feature distributions during training,they are evolutionary to guide the model to achieve category-wise feature alignment.Experiments on both GTA5 and SYNTHIA datasets demonstrate Leci's superiority over prior representative methods.展开更多
Unsupervised vehicle re-identification(Re-ID)methods have garnered widespread attention due to their potential in real-world traffic monitoring.However,existing unsupervised domain adaptation techniques often rely on ...Unsupervised vehicle re-identification(Re-ID)methods have garnered widespread attention due to their potential in real-world traffic monitoring.However,existing unsupervised domain adaptation techniques often rely on pseudo-labels generated from the source domain,which struggle to effectively address the diversity and dynamic nature of real-world scenarios.Given the limited variety of common vehicle types,enhancing the model’s generalization capability across these types is crucial.To this end,an innovative approach called meta-type generalization(MTG)is proposed.By dividing the training data into meta-train and meta-test sets based on vehicle type information,a novel gradient interaction computation strategy is designed to enhance the model’s ability to learn typeinvariant features.Integrated into the ResNet50 backbone,the MTG model achieves improvements of 4.50%and 12.04%on the Veri-776 and VRAI datasets,respectively,compared with traditional unsupervised algorithms,and surpasses current state-of-the-art methods.This achievement holds promise for application in intelligent traffic systems,enabling more efficient urban traffic solutions.展开更多
Traditional feature-based image stitching techniques often encounter obstacles when dealing with images lackingunique attributes or suffering from quality degradation. The scarcity of annotated datasets in real-life s...Traditional feature-based image stitching techniques often encounter obstacles when dealing with images lackingunique attributes or suffering from quality degradation. The scarcity of annotated datasets in real-life scenesseverely undermines the reliability of supervised learning methods in image stitching. Furthermore, existing deeplearning architectures designed for image stitching are often too bulky to be deployed on mobile and peripheralcomputing devices. To address these challenges, this study proposes a novel unsupervised image stitching methodbased on the YOLOv8 (You Only Look Once version 8) framework that introduces deep homography networksand attentionmechanisms. Themethodology is partitioned into three distinct stages. The initial stage combines theattention mechanism with a pooling pyramid model to enhance the detection and recognition of compact objectsin images, the task of the deep homography networks module is to estimate the global homography of the inputimages consideringmultiple viewpoints. The second stage involves preliminary stitching of the masks generated inthe initial stage and further enhancement through weighted computation to eliminate common stitching artifacts.The final stage is characterized by adaptive reconstruction and careful refinement of the initial stitching results.Comprehensive experiments acrossmultiple datasets are executed tometiculously assess the proposed model. Ourmethod’s Peak Signal-to-Noise Ratio (PSNR) and Structure Similarity Index Measure (SSIM) improved by 10.6%and 6%. These experimental results confirm the efficacy and utility of the presented model in this paper.展开更多
Underwater image enhancement aims to restore a clean appearance and thus improves the quality of underwater degraded images.Current methods feed the whole image directly into the model for enhancement.However,they ign...Underwater image enhancement aims to restore a clean appearance and thus improves the quality of underwater degraded images.Current methods feed the whole image directly into the model for enhancement.However,they ignored that the R,G and B channels of underwater degraded images present varied degrees of degradation,due to the selective absorption for the light.To address this issue,we propose an unsupervised multi-expert learning model by considering the enhancement of each color channel.Specifically,an unsupervised architecture based on generative adversarial network is employed to alleviate the need for paired underwater images.Based on this,we design a generator,including a multi-expert encoder,a feature fusion module and a feature fusion-guided decoder,to generate the clear underwater image.Accordingly,a multi-expert discriminator is proposed to verify the authenticity of the R,G and B channels,respectively.In addition,content perceptual loss and edge loss are introduced into the loss function to further improve the content and details of the enhanced images.Extensive experiments on public datasets demonstrate that our method achieves more pleasing results in vision quality.Various metrics(PSNR,SSIM,UIQM and UCIQE) evaluated on our enhanced images have been improved obviously.展开更多
Time series anomaly detection is crucial in various industrial applications to identify unusual behaviors within the time series data.Due to the challenges associated with annotating anomaly events,time series reconst...Time series anomaly detection is crucial in various industrial applications to identify unusual behaviors within the time series data.Due to the challenges associated with annotating anomaly events,time series reconstruction has become a prevalent approach for unsupervised anomaly detection.However,effectively learning representations and achieving accurate detection results remain challenging due to the intricate temporal patterns and dependencies in real-world time series.In this paper,we propose a cross-dimension attentive feature fusion network for time series anomaly detection,referred to as CAFFN.Specifically,a series and feature mixing block is introduced to learn representations in 1D space.Additionally,a fast Fourier transform is employed to convert the time series into 2D space,providing the capability for 2D feature extraction.Finally,a cross-dimension attentive feature fusion mechanism is designed that adaptively integrates features across different dimensions for anomaly detection.Experimental results on real-world time series datasets demonstrate that CAFFN performs better than other competing methods in time series anomaly detection.展开更多
As the main equipment of coal mining production,the anomaly detection of shearer is important to ensure production efficiency and coal mine safety.One key challenge lies in the limited or even absence of labeled monit...As the main equipment of coal mining production,the anomaly detection of shearer is important to ensure production efficiency and coal mine safety.One key challenge lies in the limited or even absence of labeled monitoring data for the equipment,coupled with the high costs associated with manual annotation.Another challenge stems from the complex structure of the mining machines,making it difficult to reflect the overall operational state through local anomaly detection.Consequently,the application of decoupled local anomaly detection for mining machines in practical production remains challenging.This paper presents an unsupervised learning-based method for detecting anomalies in shearer.The method includes a module for constructing a Multi-scale Correlation Matrix(MSCM)of mining machine operating conditions,as well as the CNN-ConvLSTM Autoencoder(C-CLA)network.The module for constructing an MSCM enhances the representation of interrelationships between various features of the equipment from different perspectives using multiple correlation analysis methods.The C-CLA network integrates convolutional and convolutional recurrent neural networks,with the convolutional structure extracting local spatial features and the ConvLSTM structure further capturing information from different time scales and feature scales,thereby enhancing the model’s perceptual capabilities towards changes in equipment status.Finally,shearer anomaly detection is achieved through the analysis of reconstructed residual matrices.The rationality and practicality of the proposed method have been validated on our dataset,and the model’s generalization capability has been verified through repeated experiments in similar scenarios.However,due to variations in the working environment of different mining faces and differences in equipment models,implementing detection on other mining faces often requires retraining the model with new data.Furthermore,we compared our method with other anomaly detection techniques,and our detection efficiency was superior by approximately 3%.This method effectively detects anomalies in the shearer.展开更多
In Unsupervised Domain Adaptation(UDA)for person re-identification(re-ID),the primary challenge is reducing the distribution discrepancy between the source and target domains.This can be achieved by implicitly or expl...In Unsupervised Domain Adaptation(UDA)for person re-identification(re-ID),the primary challenge is reducing the distribution discrepancy between the source and target domains.This can be achieved by implicitly or explicitly constructing an appropriate intermediate domain to enhance recognition capability on the target domain.Implicit construction is difficult due to the absence of intermediate state supervision,making smooth knowledge transfer from the source to the target domain a challenge.To explicitly construct the most suitable intermediate domain for the model to gradually adapt to the feature distribution changes from the source to the target domain,we propose the Minimal Transfer Cost Framework(MTCF).MTCF considers all scenarios of the intermediate domain during the transfer process,ensuring smoother and more efficient domain alignment.Our framework mainly includes threemodules:Intermediate Domain Generator(IDG),Cross-domain Feature Constraint Module(CFCM),and Residual Channel Space Module(RCSM).First,the IDG Module is introduced to generate all possible intermediate domains,ensuring a smooth transition of knowledge fromthe source to the target domain.To reduce the cross-domain feature distribution discrepancy,we propose the CFCM Module,which quantifies the difficulty of knowledge transfer and ensures the diversity of intermediate domain features and their semantic relevance,achieving alignment between the source and target domains by incorporating mutual information and maximum mean discrepancy.We also design the RCSM,which utilizes attention mechanism to enhance the model’s focus on personnel features in low-resolution images,improving the accuracy and efficiency of person re-ID.Our proposed method outperforms existing technologies in all common UDA re-ID tasks and improves the Mean Average Precision(mAP)by 2.3%in the Market to Duke task compared to the state-of-the-art(SOTA)methods.展开更多
Image classification and unsupervised image segmentation can be achieved using the Gaussian mixture model.Although the Gaussian mixture model enhances the flexibility of image segmentation,it does not reflect spatial ...Image classification and unsupervised image segmentation can be achieved using the Gaussian mixture model.Although the Gaussian mixture model enhances the flexibility of image segmentation,it does not reflect spatial information and is sensitive to the segmentation parameter.In this study,we first present an efficient algorithm that incorporates spatial information into the Gaussian mixture model(GMM)without parameter estimation.The proposed model highlights the residual region with considerable information and constructs color saliency.Second,we incorporate the content-based color saliency as spatial information in the Gaussian mixture model.The segmentation is performed by clustering each pixel into an appropriate component according to the expectation maximization and maximum criteria.Finally,the random color histogram assigns a unique color to each cluster and creates an attractive color by default for segmentation.A random color histogram serves as an effective tool for data visualization and is instrumental in the creation of generative art,facilitating both analytical and aesthetic objectives.For experiments,we have used the Berkeley segmentation dataset BSDS-500 and Microsoft Research in Cambridge dataset.In the study,the proposed model showcases notable advancements in unsupervised image segmentation,with probabilistic rand index(PRI)values reaching 0.80,BDE scores as low as 12.25 and 12.02,compactness variations at 0.59 and 0.7,and variation of information(VI)reduced to 2.0 and 1.49 for the BSDS-500 and MSRC datasets,respectively,outperforming current leading-edge methods and yielding more precise segmentations.展开更多
基金FEDER/Ministry of Science and Innovation-State Research Agency/Project PID2020-112667RB-I00 funded by MCIN/AEI/10.13039/501100011033the Basque Government,IT1726-22+2 种基金by the predoctoral contracts PRE_2022_2_0022 and EP_2023_1_0015 of the Basque Governmentpartially supported by the Italian MIUR,PRIN 2020 Project“COMMON-WEARS”,N.2020HCWWLP,CUP:H23C22000230005co-funding from Next Generation EU,in the context of the National Recovery and Resilience Plan,through the Italian MUR,PRIN 2022 Project”COCOWEARS”(A framework for COntinuum COmputing WEARable Systems),N.2022T2XNJE,CUP:H53D23003640006.
文摘Detecting sitting posture abnormalities in wheelchair users enables early identification of changes in their functional status.To date,this detection has relied on in-person observation by medical specialists.However,given the challenges faced by health specialists to carry out continuous monitoring,the development of an intelligent anomaly detection system is proposed.Unlike other authors,where they use supervised techniques,this work proposes using unsupervised techniques due to the advantages they offer.These advantages include the lack of prior labeling of data,and the detection of anomalies previously not contemplated,among others.In the present work,an individualized methodology consisting of two phases is developed:characterizing the normal sitting pattern and determining abnormal samples.An analysis has been carried out between different unsupervised techniques to study which ones are more suitable for postural diagnosis.It can be concluded,among other aspects,that the utilization of dimensionality reduction techniques leads to improved results.Moreover,the normality characterization phase is deemed necessary for enhancing the system’s learning capabilities.Additionally,employing an individualized approach to the model aids in capturing the particularities of the various pathologies present among subjects.
基金supported by the following funding bodies:the National Key Research and Development Program of China(Grant No.2020YFA0608000)National Science Foundation of China(Grant Nos.42075142,42375148,42125503+2 种基金42130608)FY-APP-2022.0609,Sichuan Province Key Tech nology Research and Development project(Grant Nos.2024ZHCG0168,2024ZHCG0176,2023YFG0305,2023YFG-0124,and 23ZDYF0091)the CUIT Science and Technology Innovation Capacity Enhancement Program project(Grant No.KYQN202305)。
文摘Climate downscaling is used to transform large-scale meteorological data into small-scale data with enhanced detail,which finds wide applications in climate modeling,numerical weather forecasting,and renewable energy.Although deeplearning-based downscaling methods effectively capture the complex nonlinear mapping between meteorological data of varying scales,the supervised deep-learning-based downscaling methods suffer from insufficient high-resolution data in practice,and unsupervised methods struggle with accurately inferring small-scale specifics from limited large-scale inputs due to small-scale uncertainty.This article presents DualDS,a dual-learning framework utilizing a Generative Adversarial Network–based neural network and subgrid-scale auxiliary information for climate downscaling.Such a learning method is unified in a two-stream framework through up-and downsamplers,where the downsampler is used to simulate the information loss process during the upscaling,and the upsampler is used to reconstruct lost details and correct errors incurred during the upscaling.This dual learning strategy can eliminate the dependence on high-resolution ground truth data in the training process and refine the downscaling results by constraining the mapping process.Experimental findings demonstrate that DualDS is comparable to several state-of-the-art deep learning downscaling approaches,both qualitatively and quantitatively.Specifically,for a single surface-temperature data downscaling task,our method is comparable with other unsupervised algorithms with the same dataset,and we can achieve a 0.469 dB higher peak signal-to-noise ratio,0.017 higher structural similarity,0.08 lower RMSE,and the best correlation coefficient.In summary,this paper presents a novel approach to addressing small-scale uncertainty issues in unsupervised downscaling processes.
基金co-supported by the National Science and Technology Major Project,China(No.J2019-I-0001-0001)the National Natural Science Foundation of China(No.52105545)。
文摘The original monitoring data from aero-engines possess characteristics such as high dimen-sionality,strong noise,and imbalance,which present substantial challenges to traditional anomalydetection methods.In response,this paper proposes a method based on Fuzzy Fusion of variablesand Discriminant mapping of features for Clustering(FFD-Clustering)to detect anomalies in originalmonitoring data from Aircraft Communication Addressing and Reporting System(ACARS).Firstly,associated variables are fuzzily grouped to extract the underlying distribution characteristics and trendsfrom the data.Secondly,a multi-layer contrastive denoising-based feature Fusion Encoding Network(FEN)is designed for each variable group,which can construct representative features for each variablegroup through eliminating strong noise and complex interrelations between variables.Thirdly,a featureDiscriminative Mapping Network(DMN)based on reconstruction difference re-clustering is designed,which can distinguish dissimilar feature vectors when mapping representative features to a unified fea-ture space.Finally,the K-means clustering is used to detect the abnormal feature vectors in the unifiedfeature space.Additionally,the algorithm is capable of reconstructing identified abnormal vectors,thereby locating the abnormal variable groups.The performance of this algorithm was tested ontwo public datasets and real original monitoring data from four aero-engines'ACARS,demonstratingits superiority and application potential in aero-engine anomaly detection.
基金support from the Fundamental Research Funds for Central Public Welfare Research Institutes(SK202324)the Central Guidance on Local Science and Technology Development Fund of Hebei Province(236Z0104G)+1 种基金the National Natural Science Foundation of China(62476078)the Geological Survey Project of China Geological Survey(G202304-2).
文摘Time series anomaly detection is crucial in finance,healthcare,and industrial monitoring.However,traditional methods often face challenges when handling time series data,such as limited feature extraction capability,poor temporal dependency handling,and suboptimal real-time performance,sometimes even neglecting the temporal relationships between data.To address these issues and improve anomaly detection performance by better capturing temporal dependencies,we propose an unsupervised time series anomaly detection method,VLT-Anomaly.First,we enhance the Variational Autoencoder(VAE)module by redesigning its network structure to better suit anomaly detection through data reconstruction.We introduce hyperparameters to control the weight of the Kullback-Leibler(KL)divergence term in the Evidence Lower Bound(ELBO),thereby improving the encoder module’s decoupling and expressive power in the latent space,which yields more effective latent representations of the data.Next,we incorporate transformer and Long Short-Term Memory(LSTM)modules to estimate the long-term dependencies of the latent representations,capturing both forward and backward temporal relationships and performing time series forecasting.Finally,we compute the reconstruction error by averaging the predicted results and decoder reconstruction and detect anomalies through grid search for optimal threshold values.Experimental results demonstrate that the proposed method performs superior anomaly detection on multiple public time series datasets,effectively extracting complex time-related features and enabling efficient computation and real-time anomaly detection.It improves detection accuracy and robustness while reducing false positives and false negatives.
基金supported in part by the National Natural Science Foundation of China under Grant 62303090,U2330206in part by the Postdoctoral Science Foundation of China under Grant 2023M740516+1 种基金in part by the Natural Science Foundation of Sichuan Province under Grant 2024NSFSC1480in part by the New Cornerstone Science Foundation through the XPLORER PRIZE.
文摘Reliable electricity infrastructure is critical for modern society,highlighting the importance of securing the stability of fundamental power electronic systems.However,as such systems frequently involve high-current and high-voltage conditions,there is a greater likelihood of failures.Consequently,anomaly detection of power electronic systems holds great significance,which is a task that properly-designed neural networks can well undertake,as proven in various scenarios.Transformer-like networks are promising for such application,yet with its structure initially designed for different tasks,features extracted by beginning layers are often lost,decreasing detection performance.Also,such data-driven methods typically require sufficient anomalous data for training,which could be difficult to obtain in practice.Therefore,to improve feature utilization while achieving efficient unsupervised learning,a novel model,Densely-connected Decoder Transformer(DDformer),is proposed for unsupervised anomaly detection of power electronic systems in this paper.First,efficient labelfree training is achieved based on the concept of autoencoder with recursive-free output.An encoder-decoder structure with densely-connected decoder is then adopted,merging features from all encoder layers to avoid possible loss of mined features while reducing training difficulty.Both simulation and real-world experiments are conducted to validate the capabilities of DDformer,and the average FDR has surpassed baseline models,reaching 89.39%,93.91%,95.98%in different experiment setups respectively.
文摘Background Zonal application maps are designed to represent field variability using key variables that can be translated into tailored management practices.For cotton,zonal maps for crop growth regulator(CGR)applications under variable-rate(VR)strategies are commonly based exclusively on vegetation indices(VIs)variability.However,VIs often saturate in dense crop vegetation areas,limiting their effectiveness in distinguishing variability in crop growth.This study aimed to compare unsupervised framework(UF)and supervised framework(SUF)approaches for generat-ing zonal application maps for CGR under VR conditions.During 2022-2023 agricultural seasons,an UF was employed to generate zonal maps based on locally collected field data on plant height of cotton,satellite imagery,soil texture,and phenology data.Subsequently,a SUF(based on historical data between 2020-2021 to 2022-2023 agricultural seasons)was developed to predict plant height using remote sensing and phenology data,aiming to replicate same zonal maps but without relying on direct field measurements of plant height.Both approaches were tested in three fields and on two different dates per field.Results The predictive model for plant height of SUF performed well,as indicated by the model metrics.However,when comparing zonal application maps for specific field-date combinations,the predicted plant height exhibited lower variability compared with field measurements.This led to variable compatibility between SUF maps,which utilized the model predictions,and the UF maps,which were based on the real field data.Fields characterized by much pronounced soil texture variability yielded the highest compatibility between the zonal application maps produced by both SUF and UF approaches.This was predominantly due to the greater consistency in estimating plant development patterns within these heterogeneous field environments.While VR application approach can facilitate product savings during the application operation,other key factors must be considered.These include the availability of specialized machinery required for this type of applications,as well as the inherent operational costs associated with applying a single CGR product which differs from the typical uniform rate applications that often integrate multi-ple inputs.Conclusion Predictive modeling shows promise for assisting in the creation of zonal application maps for VR of CGR applications.However,the degree of agreement with the actual variability in crop growth found in the field should be evaluated on a field-by-field basis.The SUF approach,which is based on plant heigh prediction,demonstrated potential for supporting the development of zonal application maps for VR of CGR applications.However,the degree to which this approach aligns itself with the actual variability in crop growth observed in the field may vary,necessi-tating field-by-field evaluation.
文摘Skin cancer,a severe health threat,can spread rapidly if undetected.Therefore,early detection can lead to an advanced and efficient diagnosis,thus reducing mortality.Unsupervised classification techniques analyse extensive skin image datasets,identifying patterns and anomalies without prior labelling,facilitating early detection and effective diagnosis and potentially saving lives.In this study,the authors aim to explore the potential of unsupervised learning methods in classifying different types of skin lesions in dermatoscopic images.The authors aim to bridge the gap in dermatological research by introducing innovative techniques that enhance image quality and improve feature extraction.To achieve this,enhanced super-resolution generative adversarial networks(ESRGAN)was fine-tuned to strengthen the resolution of skin lesion images,making critical features more visible.The authors extracted histogram features to capture essential colour characteristics and used the Davies-Bouldin index and silhouette score to determine optimal clusters.Fine-tuned k-means clustering with Euclidean distance in the histogram feature space achieved 87.77% and 90.5% test accuracies on the ISIC2019 and HAM10000 datasets,respectively.The unsupervised approach effectively categorises skin lesions,indicating that unsupervised learning can significantly advance dermatology by enabling early detection and classification without extensive manual annotation.
基金funded by the Yangtze River Delta Science and Technology Innovation Community Joint Research Project(2023CSJGG1600)the Natural Science Foundation of Anhui Province(2208085MF173)Wuhu“ChiZhu Light”Major Science and Technology Project(2023ZD01,2023ZD03).
文摘In the dynamic scene of autonomous vehicles,the depth estimation of monocular cameras often faces the problem of inaccurate edge depth estimation.To solve this problem,we propose an unsupervised monocular depth estimation model based on edge enhancement,which is specifically aimed at the depth perception challenge in dynamic scenes.The model consists of two core networks:a deep prediction network and a motion estimation network,both of which adopt an encoder-decoder architecture.The depth prediction network is based on the U-Net structure of ResNet18,which is responsible for generating the depth map of the scene.The motion estimation network is based on the U-Net structure of Flow-Net,focusing on the motion estimation of dynamic targets.In the decoding stage of the motion estimation network,we innovatively introduce an edge-enhanced decoder,which integrates a convolutional block attention module(CBAM)in the decoding process to enhance the recognition ability of the edge features of moving objects.In addition,we also designed a strip convolution module to improve the model’s capture efficiency of discrete moving targets.To further improve the performance of the model,we propose a novel edge regularization method based on the Laplace operator,which effectively accelerates the convergence process of themodel.Experimental results on the KITTI and Cityscapes datasets show that compared with the current advanced dynamic unsupervised monocular model,the proposed model has a significant improvement in depth estimation accuracy and convergence speed.Specifically,the rootmean square error(RMSE)is reduced by 4.8%compared with the DepthMotion algorithm,while the training convergence speed is increased by 36%,which shows the superior performance of the model in the depth estimation task in dynamic scenes.
基金supported in part by the National Natural Science Foundation of China under Grants 32171909,52205254,32301704the Guangdong Basic and Applied Basic Research Foundation under Grants 2023A1515011255,2024A1515010199+1 种基金the Scientific Research Projects of Universities in Guangdong Province under Grants 2024ZDZX1042,2024ZDZX3057the Ji-Hua Laboratory Open Project under Grant X220931UZ230.
文摘Defect detection based on computer vision is a critical component in ensuring the quality of industrial products.However,existing detection methods encounter several challenges in practical applications,including the scarcity of labeled samples,limited adaptability of pre-trained models,and the data heterogeneity in distributed environments.To address these issues,this research proposes an unsupervised defect detection method,FLAME(Federated Learning with Adaptive Multi-Model Embeddings).The method comprises three stages:(1)Feature learning stage:this work proposes FADE(Feature-Adaptive Domain-Specific Embeddings),a framework employs Gaussian noise injection to simulate defective patterns and implements a feature discriminator for defect detection,thereby enhancing the pre-trained model’s industrial imagery representation capabilities.(2)Knowledge distillation co-training stage:a multi-model feature knowledge distillation mechanism is introduced.Through feature-level knowledge transfer between the global model and historical local models,the current local model is guided to learn better feature representations from the global model.The approach prevents local models from converging to local optima and mitigates performance degradation caused by data heterogeneity.(3)Model parameter aggregation stage:participating clients utilize weighted averaging aggregation to synthesize an updated global model,facilitating efficient knowledge consolidation.Experimental results demonstrate that FADE improves the average image-level Area under the Receiver Operating Characteristic Curve(AUROC)by 7.34%compared to methods directly utilizing pre-trained models.In federated learning environments,FLAME’s multi-model feature knowledge distillation mechanism outperforms the classic FedAvg algorithm by 2.34%in average image-level AUROC,while exhibiting superior convergence properties.
文摘Web data extraction has become a key technology for extracting valuable data from websites.At present,most extraction methods based on rule learning,visual pattern or tree matching have limited performance on complex web pages.Through ana-lyzing various statistical characteristics of HTML el-ements in web documents,this paper proposes,based on statistical features,an unsupervised web data ex-traction method—traversing the HTML DOM parse tree at first,calculating and generating the statistical matrix of the elements,and then locating data records by clustering method and heuristic rules that reveal in-herent links between the visual characteristics of the data recording areas and the statistical characteristics of the HTML nodes—which is both suitable for data records extraction of single-page and multi-pages,and it has strong generality and needs no training.The ex-periments show that the accuracy and efficiency of this method are equally better than the current data extrac-tion method.
基金supported by the National Natural Science Foundation of China under Grant Nos.62461037,62076117 and 62166026the Jiangxi Provincial Natural Science Foundation under Grant Nos.20224BAB212011,20232BAB202051,20232BAB212008 and 20242BAB25078the Jiangxi Provincial Key Laboratory of Virtual Reality under Grant No.2024SSY03151.
文摘The unsupervised vehicle re-identification task aims at identifying specific vehicles in surveillance videos without utilizing annotation information.Due to the higher similarity in appearance between vehicles compared to pedestrians,pseudo-labels generated through clustering are ineffective in mitigating the impact of noise,and the feature distance between inter-class and intra-class has not been adequately improved.To address the aforementioned issues,we design a dual contrastive learning method based on knowledge distillation.During each iteration,we utilize a teacher model to randomly partition the entire dataset into two sub-domains based on clustering pseudo-label categories.By conducting contrastive learning between the two student models,we extract more discernible vehicle identity cues to improve the problem of imbalanced data distribution.Subsequently,we propose a context-aware pseudo label refinement strategy that leverages contextual features by progressively associating granularity information from different bottleneck blocks.To produce more trustworthy pseudo-labels and lessen noise interference during the clustering process,the context-aware scores are obtained by calculating the similarity between global features and contextual ones,which are subsequently added to the pseudo-label encoding process.The proposed method has achieved excellent performance in overcoming label noise and optimizing data distribution through extensive experimental results on publicly available datasets.
文摘Representation learning from unlabeled skeleton data is a challenging task.Prior unsupervised learning algorithms mainly rely on the modeling ability of recurrent neural networks to extract the action representations.However,the structural information of the skeleton data,which also plays a critical role in action recognition,is rarely explored in existing unsupervised methods.To deal with this limitation,we propose a novel twostream autoencoder network to combine the topological information with temporal information of skeleton data.Specifically,we encode the graph structure by graph convolutional network(GCN)and integrate the extracted GCN-based representations into the gate recurrent unit stream.Then we design a transfer module to merge the representations of the two streams adaptively.According to the characteristics of the two-stream autoencoder,a unified loss function composed of multiple tasks is proposed to update the learnable parameters of our model.Comprehensive experiments on NW-UCLA,UWA3D,and NTU-RGBD 60 datasets demonstrate that our proposed method can achieve an excellent performance among the unsupervised skeleton-based methods and even perform a similar or superior performance over numerous supervised skeleton-based methods.
基金Australian Research Council Project(FL-170100117).
文摘To avoid the laborious annotation process for dense prediction tasks like semantic segmentation,unsupervised domain adaptation(UDA)methods have been proposed to leverage the abundant annotations from a source domain,such as virtual world(e.g.,3D games),and adapt models to the target domain(the real world)by narrowing the domain discrepancies.However,because of the large domain gap,directly aligning two distinct domains without considering the intermediates leads to inefficient alignment and inferior adaptation.To address this issue,we propose a novel learnable evolutionary Category Intermediates(CIs)guided UDA model named Leci,which enables the information transfer between the two domains via two processes,i.e.,Distilling and Blending.Starting from a random initialization,the CIs learn shared category-wise semantics automatically from two domains in the Distilling process.Then,the learned semantics in the CIs are sent back to blend the domain features through a residual attentive fusion(RAF)module,such that the categorywise features of both domains shift towards each other.As the CIs progressively and consistently learn from the varying feature distributions during training,they are evolutionary to guide the model to achieve category-wise feature alignment.Experiments on both GTA5 and SYNTHIA datasets demonstrate Leci's superiority over prior representative methods.
基金Supported by the National Natural Science Foundation of China(No.61976098)the Natural Science Foundation for Outstanding Young Scholars of Fujian Province(No.2022J06023).
文摘Unsupervised vehicle re-identification(Re-ID)methods have garnered widespread attention due to their potential in real-world traffic monitoring.However,existing unsupervised domain adaptation techniques often rely on pseudo-labels generated from the source domain,which struggle to effectively address the diversity and dynamic nature of real-world scenarios.Given the limited variety of common vehicle types,enhancing the model’s generalization capability across these types is crucial.To this end,an innovative approach called meta-type generalization(MTG)is proposed.By dividing the training data into meta-train and meta-test sets based on vehicle type information,a novel gradient interaction computation strategy is designed to enhance the model’s ability to learn typeinvariant features.Integrated into the ResNet50 backbone,the MTG model achieves improvements of 4.50%and 12.04%on the Veri-776 and VRAI datasets,respectively,compared with traditional unsupervised algorithms,and surpasses current state-of-the-art methods.This achievement holds promise for application in intelligent traffic systems,enabling more efficient urban traffic solutions.
基金Science and Technology Research Project of the Henan Province(222102240014).
文摘Traditional feature-based image stitching techniques often encounter obstacles when dealing with images lackingunique attributes or suffering from quality degradation. The scarcity of annotated datasets in real-life scenesseverely undermines the reliability of supervised learning methods in image stitching. Furthermore, existing deeplearning architectures designed for image stitching are often too bulky to be deployed on mobile and peripheralcomputing devices. To address these challenges, this study proposes a novel unsupervised image stitching methodbased on the YOLOv8 (You Only Look Once version 8) framework that introduces deep homography networksand attentionmechanisms. Themethodology is partitioned into three distinct stages. The initial stage combines theattention mechanism with a pooling pyramid model to enhance the detection and recognition of compact objectsin images, the task of the deep homography networks module is to estimate the global homography of the inputimages consideringmultiple viewpoints. The second stage involves preliminary stitching of the masks generated inthe initial stage and further enhancement through weighted computation to eliminate common stitching artifacts.The final stage is characterized by adaptive reconstruction and careful refinement of the initial stitching results.Comprehensive experiments acrossmultiple datasets are executed tometiculously assess the proposed model. Ourmethod’s Peak Signal-to-Noise Ratio (PSNR) and Structure Similarity Index Measure (SSIM) improved by 10.6%and 6%. These experimental results confirm the efficacy and utility of the presented model in this paper.
基金supported in part by the National Key Research and Development Program of China(2020YFB1313002)the National Natural Science Foundation of China(62276023,U22B2055,62222302,U2013202)+1 种基金the Fundamental Research Funds for the Central Universities(FRF-TP-22-003C1)the Postgraduate Education Reform Project of Henan Province(2021SJGLX260Y)。
文摘Underwater image enhancement aims to restore a clean appearance and thus improves the quality of underwater degraded images.Current methods feed the whole image directly into the model for enhancement.However,they ignored that the R,G and B channels of underwater degraded images present varied degrees of degradation,due to the selective absorption for the light.To address this issue,we propose an unsupervised multi-expert learning model by considering the enhancement of each color channel.Specifically,an unsupervised architecture based on generative adversarial network is employed to alleviate the need for paired underwater images.Based on this,we design a generator,including a multi-expert encoder,a feature fusion module and a feature fusion-guided decoder,to generate the clear underwater image.Accordingly,a multi-expert discriminator is proposed to verify the authenticity of the R,G and B channels,respectively.In addition,content perceptual loss and edge loss are introduced into the loss function to further improve the content and details of the enhanced images.Extensive experiments on public datasets demonstrate that our method achieves more pleasing results in vision quality.Various metrics(PSNR,SSIM,UIQM and UCIQE) evaluated on our enhanced images have been improved obviously.
基金supported in part by the National Natural Science Foundation of China(Grants 62376172,62006163,62376043)in part by the National Postdoctoral Program for Innovative Talents(Grant BX20200226)in part by Sichuan Science and Technology Planning Project(Grants 2022YFSY0047,2022YFQ0014,2023ZYD0143,2022YFH0021,2023YFQ0020,24QYCX0354,24NSFTD0025).
文摘Time series anomaly detection is crucial in various industrial applications to identify unusual behaviors within the time series data.Due to the challenges associated with annotating anomaly events,time series reconstruction has become a prevalent approach for unsupervised anomaly detection.However,effectively learning representations and achieving accurate detection results remain challenging due to the intricate temporal patterns and dependencies in real-world time series.In this paper,we propose a cross-dimension attentive feature fusion network for time series anomaly detection,referred to as CAFFN.Specifically,a series and feature mixing block is introduced to learn representations in 1D space.Additionally,a fast Fourier transform is employed to convert the time series into 2D space,providing the capability for 2D feature extraction.Finally,a cross-dimension attentive feature fusion mechanism is designed that adaptively integrates features across different dimensions for anomaly detection.Experimental results on real-world time series datasets demonstrate that CAFFN performs better than other competing methods in time series anomaly detection.
文摘As the main equipment of coal mining production,the anomaly detection of shearer is important to ensure production efficiency and coal mine safety.One key challenge lies in the limited or even absence of labeled monitoring data for the equipment,coupled with the high costs associated with manual annotation.Another challenge stems from the complex structure of the mining machines,making it difficult to reflect the overall operational state through local anomaly detection.Consequently,the application of decoupled local anomaly detection for mining machines in practical production remains challenging.This paper presents an unsupervised learning-based method for detecting anomalies in shearer.The method includes a module for constructing a Multi-scale Correlation Matrix(MSCM)of mining machine operating conditions,as well as the CNN-ConvLSTM Autoencoder(C-CLA)network.The module for constructing an MSCM enhances the representation of interrelationships between various features of the equipment from different perspectives using multiple correlation analysis methods.The C-CLA network integrates convolutional and convolutional recurrent neural networks,with the convolutional structure extracting local spatial features and the ConvLSTM structure further capturing information from different time scales and feature scales,thereby enhancing the model’s perceptual capabilities towards changes in equipment status.Finally,shearer anomaly detection is achieved through the analysis of reconstructed residual matrices.The rationality and practicality of the proposed method have been validated on our dataset,and the model’s generalization capability has been verified through repeated experiments in similar scenarios.However,due to variations in the working environment of different mining faces and differences in equipment models,implementing detection on other mining faces often requires retraining the model with new data.Furthermore,we compared our method with other anomaly detection techniques,and our detection efficiency was superior by approximately 3%.This method effectively detects anomalies in the shearer.
文摘In Unsupervised Domain Adaptation(UDA)for person re-identification(re-ID),the primary challenge is reducing the distribution discrepancy between the source and target domains.This can be achieved by implicitly or explicitly constructing an appropriate intermediate domain to enhance recognition capability on the target domain.Implicit construction is difficult due to the absence of intermediate state supervision,making smooth knowledge transfer from the source to the target domain a challenge.To explicitly construct the most suitable intermediate domain for the model to gradually adapt to the feature distribution changes from the source to the target domain,we propose the Minimal Transfer Cost Framework(MTCF).MTCF considers all scenarios of the intermediate domain during the transfer process,ensuring smoother and more efficient domain alignment.Our framework mainly includes threemodules:Intermediate Domain Generator(IDG),Cross-domain Feature Constraint Module(CFCM),and Residual Channel Space Module(RCSM).First,the IDG Module is introduced to generate all possible intermediate domains,ensuring a smooth transition of knowledge fromthe source to the target domain.To reduce the cross-domain feature distribution discrepancy,we propose the CFCM Module,which quantifies the difficulty of knowledge transfer and ensures the diversity of intermediate domain features and their semantic relevance,achieving alignment between the source and target domains by incorporating mutual information and maximum mean discrepancy.We also design the RCSM,which utilizes attention mechanism to enhance the model’s focus on personnel features in low-resolution images,improving the accuracy and efficiency of person re-ID.Our proposed method outperforms existing technologies in all common UDA re-ID tasks and improves the Mean Average Precision(mAP)by 2.3%in the Market to Duke task compared to the state-of-the-art(SOTA)methods.
基金supported by the MOE(Ministry of Education of China)Project of Humanities and Social Sciences(23YJAZH169)the Hubei Provincial Department of Education Outstanding Youth Scientific Innovation Team Support Foundation(T2020017)Henan Foreign Experts Project No.HNGD2023027.
文摘Image classification and unsupervised image segmentation can be achieved using the Gaussian mixture model.Although the Gaussian mixture model enhances the flexibility of image segmentation,it does not reflect spatial information and is sensitive to the segmentation parameter.In this study,we first present an efficient algorithm that incorporates spatial information into the Gaussian mixture model(GMM)without parameter estimation.The proposed model highlights the residual region with considerable information and constructs color saliency.Second,we incorporate the content-based color saliency as spatial information in the Gaussian mixture model.The segmentation is performed by clustering each pixel into an appropriate component according to the expectation maximization and maximum criteria.Finally,the random color histogram assigns a unique color to each cluster and creates an attractive color by default for segmentation.A random color histogram serves as an effective tool for data visualization and is instrumental in the creation of generative art,facilitating both analytical and aesthetic objectives.For experiments,we have used the Berkeley segmentation dataset BSDS-500 and Microsoft Research in Cambridge dataset.In the study,the proposed model showcases notable advancements in unsupervised image segmentation,with probabilistic rand index(PRI)values reaching 0.80,BDE scores as low as 12.25 and 12.02,compactness variations at 0.59 and 0.7,and variation of information(VI)reduced to 2.0 and 1.49 for the BSDS-500 and MSRC datasets,respectively,outperforming current leading-edge methods and yielding more precise segmentations.